Answer:
red I think
Explanation:
it's on red so I googled some of it and the closest was red
Refer to the diagram shown below.
For horizontal equilibrium,
T₃ cos38 = T₂ cos 50
0.788 T₃ = 0.6428 T₂
T₃ = 0.8157 T₂ (1)
For vertical equilibrium,
T₂ sin 50 + T₃ sin 38 = 430
0.766 T₂ + 0.6157 T₃ = 430
1.2441 T₂ + T₃ = 698.392 (2)
Substitute (1) into (2).
(1.2441 + 0.8157) T₂ = 698.392
T₂ = 339.058 N
T₃ = 0.8157(399.058) = 276.571 N
Answer:
T₂ = 339.06 N
T₃ = 276.57 N
"Frequency decreases" is the one way among the following choices given in the question that <span>frequency change as wavelength increases. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>
Draw a diagram to illustrate the problem as shown below.
The vertical component of the launch velocity is
v = (8.5 m/s)*sin30° = 4.25 m/s
The horizontal component of the launch velocity is
8.5*cos30° = 7.361 m/s
Assume that aerodynamic resistance may be ignored.
Because the horizontal distance traveled is 19 m, the time of travel is
t = 19/7.361 = 2.581 s
The downward vertical travel is modeled by
h = (-4.25 m/s)*(2.581 s) + 0.5*(9.8 m/s²)*(2.581 s)²
= 21.675 m
Answer: The height is 21.7 m (nearest tenth)
Answer: When the electric field due to one is a maximum, the electric field due to the other is also a maximum, and this relation is maintained as time passes. They alternatively reinforce and cancel each other.
Explanation:
In a wave, the phase, is an arbitrary time reference, used to locate a given point of the wave in time, within a cycle.
Two waves can travel at the same speed, or even have the same wavelength, but this is not enough to be sure that at a given point in time, both waves will be in their maximum, as it only can be determined from the phase of the waves.
So, only when the waves reach at the same point in time at the same amplitude, we can say that they arrive in phase, in a constructive interference.