Answer:
The correct answer is = 1.6
Explanation:
Density of water = 1000kg/m³ = d₁
Mass of brick = 4kg = m
Density of brick = 2.5 g/cm³ = 2.5 × 1000 =2500 kg/m³ = d₂
Volume of brick = m/d₂ = 4/2500 =16/10000 = 0.0016 L = v
Buoyant Force = v × d₁ × g (g= acceleration due to gravity =9.8m/s²)
= 0.0016 × 1000 × 9.8 = 15.68 Newtons
By the Archimedes' Principle, the buoyant force is equal to the weight of the liquid displaced by an object.
Weight of the water displaced=Buoyant Force
=Mass of water displaced × g,
as weight = mass × acceleration due to gravity
15.68= mass of brick × 9.8
15.68/9.8 =Mass of water displaced
1.6 kg = Mass of water displaced
Answer:
Option B

Explanation:
Given information
Radius of container, r=12cm=12/100=0.12m
Angular velocity= 2 rev/s, converted to rad/s we multiply by 2π
Angular velocity, 
We know that speed, 
Centripetal acceleration,
and substituting
we obtain that

Substituting \omega for 12.56637061 and r for 0.12

Rounded off, 
Earth sits motionless in the universe at the center of a revolving globe of starts , with the moon and planets in orbit around the earth, is the surrounding model of the uninverse
Answer:
the heat absorbed by the block of copper is 74368.476J
Explanation:
Hello!
To solve this problem use the first law of thermodynamics that states that the heat applied to a system is the difference between the initial and final energy considering that the mass and the specific heat do not change so we can infer the following equation
Q=mCp(T2-T1)
Where
Q=heat
m=mass=2.3kg
Cp=0.092 kcal/(kg C)=384.93J/kgK
T2=Final temperatura= 90C
T1= initial temperature=6 C
solving

the heat absorbed by the block of copper is 74368.476J