Answer:
(-4, -5) it gives the answer in the question
Step-by-step explanation:
By using a scatter plot we can get the relationship of two variables or correlation.
There will be two types of correlation.
If the data of the plot show a positive slope of the estimated line then it will be a positive correlation.
Now a correlation value lie between 0 to 1 if it is very close to 0 like 0.1 , 0.2 then we can say the correlation is weak psitively correlated. and if it will be close to 1 like 0.8 or 0.9 then the correlation will be strong.
Similarly if slope of the estimated line will be negative then it will be a negative correlation.
From the above scatter plot notice that it has a negative slope and we can draw a fair estimate line on this scatter plot. So, there is strong negative correlation.
Hence the correct choice is -0.8.
Answer:
Algorithm
Start
Int n // To represent the number of array
Input n
Int countsearch = 0
float search
Float [] numbers // To represent an array of non decreasing number
// Input array elements but first Initialise a counter element
Int count = 0, digit
Do
// Check if element to be inserted is the first element
If(count == 0) Then
Input numbers[count]
Else
lbl: Input digit
If(digit > numbers[count-1]) then
numbers[count] = digit
Else
Output "Number must be greater than the previous number"
Goto lbl
Endif
Endif
count = count + 1
While(count<n)
count = 0
// Input element to count
input search
// Begin searching and counting
Do
if(numbers [count] == search)
countsearch = countsearch+1;
End if
While (count < n)
Output count
Program to illustrate the above
// Written in C++
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
int main()
{
// Variable declaration
float [] numbers;
int n, count;
float num, searchdigit;
cout<<"Number of array elements: ";
cin>> n;
// Enter array element
for(int I = 0; I<n;I++)
{
if(I == 0)
{
cin>>numbers [0]
}
else
{
lbl: cin>>num;
if(num >= numbers [I])
{
numbers [I] = num;
}
else
{
goto lbl;
}
}
// Search for a particular number
int search;
cin>>searchdigit;
for(int I = 0; I<n; I++)
{
if(numbers[I] == searchdigit
search++
}
}
// Print result
cout<<search;
return 0;
}
Answer:
Step-by-step explanation:
Simplifying
-3a + 8 = 2z + -12
Reorder the terms:
8 + -3a = 2z + -12
Reorder the terms:
8 + -3a = -12 + 2z
Solving
8 + -3a = -12 + 2z
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '-8' to each side of the equation.
8 + -8 + -3a = -12 + -8 + 2z
Combine like terms: 8 + -8 = 0
0 + -3a = -12 + -8 + 2z
-3a = -12 + -8 + 2z
Combine like terms: -12 + -8 = -20
-3a = -20 + 2z
Divide each side by '-3'.
a = 6.666666667 + -0.6666666667z
Simplifying
a = 6.666666667 + -0.6666666667z