Gamma radiation has the greatest energy<span>. This </span>is<span> because gamma radiation </span>has the highest <span>frequency. </span>Energy<span> a frequency.
Hope this helps,
kwrob</span>
373 kelvin = 99.9 Celsius. Round makes it 100. 373 kelvin also equals 212 Fahrenheit so the correct answer is A.
<span />
The kinetic energy K = 0.5 * m * v² must be equal to the potential energy U = m * g * h.
m mass
v velocity
h height
g = 9.81m/s²
The mass m cancels out:
0.5 * v² = g * h
Solve for height h and transform to distance traveled.
(sin (4°) = height / distance)
Since energy cannot be created nor destroyed, the change in energy of the electron must be equal to the energy of the emitted photon.
The energy of the emitted photon is given by:

where
h is the Planck constant
f is the photon frequency
Substituting

, we find

This is the energy given to the emitted photon; it means this is also equal to the energy lost by the electron in the transition, so the variation of energy of the electron will have a negative sign (because the electron is losing energy by decaying from an excited state, with higher energy, to the ground state, with lower energy)