Answer:
W = 0.49 N
τ = 0.4851 Nm
Force
Explanation:
The weight force can be found as:
W = mg
W = (0.05 kg)(9.8 m/s²)
<u>W = 0.49 N</u>
The torque about the pivot can be found as:
τ = W*d
where,
τ = torque
d = distance between weight and pivot = 99 cm = 0.99 m
Therefore,
τ = (0.49 N)(0.99 m)
<u>τ = 0.4851 Nm</u>
The pivot exerts a <u>FORCE </u>on the meter stick because the pivot applies force normally over the stick and has a zero distance from stick.
Actually what the problem meant about the westward
component of the ball’s displacement is the horizontal component of the
displacement. To help us better understand the problem, I attached a figure of
the situation.
We can see from the figure that to solve for the value of
the horizontal component, we have to make use of the sin function. That is:
sin θ = side opposite to the angle / hypotenuse of the
triangle
sin 42 = x / 40 m
x = (40 m) sin 42
x = 26.77 m
Therefore the ball has a westward
displacement of about 26.77 m
Answer:
Coriolis Effect
Explanation:
The Coriolis effect is responsible for the deflection of winds to the right in the Northern hemisphere and to the right in the Southern hemisphere. It is an effect that occurs because of the rotation of the earth around its axis.
The implication of this is that in areas of low pressure in the Northern hemisphere, winds tend to blow in anticlockwise direction, and in areas of high pressure, it blows in a clockwise direction. The opposite of this happens in the Southern hemisphere.
Answer:
Wrap it in cotton??? like alot of it?