Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J
1. 2500/60 joules/sec
2. 2,500Nm
Answer: 330.88 J
Explanation:
Given
Linear velocity of the ball, v = 17.1 m/s
Distance from the joint, d = 0.47 m
Moment of inertia, I = 0.5 kgm²
The rotational kinetic energy, KE(rot) of an object is given by
KE(rot) = 1/2Iw²
Also, the angular velocity is given
w = v/r
Firstly, we calculate the angular velocity. Since it's needed in calculating the Kinetic Energy
w = v/r
w = 17.1 / 0.47
w = 36.38 rad/s
Now, substituting the value of w, with the already given value of I in the equation, we have
KE(rot) = 1/2Iw²
KE(rot) = 1/2 * 0.5 * 36.38²
KE(rot) = 0.25 * 1323.5
KE(rot) = 330.88 J
Answer:
The energy output object that works with the turbine is the alternator (generator)
Explanation:
In energy generation the turbine receives input energy from high pressured steam, high energy water etc. Which impinges and turn the blades of the turbine, this turbine is connected by means of a shaft to the alternator that converts the rotational motion of the shaft to electrical energy through Electro magnetic induction principles and also outputs the energy for consumption.