Answer:
a metallic
Explanation:
Metal atoms are joined together by metallic bonds. Metals can form cations (positive ions) with a sea of delocalized electrons.
<h3>
Answer:</h3>
209.236 kg · m/s
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Momentum</u>
Momentum Formula: P = mv
- P is momentum (in kg · m/s)
- m is mass (in kg)
- v is velocity (in m/s)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
m₁ = 87.2 kg
v₁ = 2.87 m/s
m₂ = 0.0520 kg
v₂ = 789 m/s
<u>Step 2: Find Momentums</u>
<em>Football Player</em>
- Substitute [MF]: P = (87.2 kg)(2.87 m/s)
- Multiply: P = 250.264 kg · m/s
<em>Bullet</em>
- Substitute [MF]: P = (0.0520 kg)(789 m/s)
- Multiply: P = 41.028 kg · m/s
<u>Step 3: Find difference</u>
- Define equation: P₁ - P₂
- Substitute: 250.264 kg · m/s - 41.028 kg · m/s
- Subtract: 209.236 kg · m/s
Answer:
im in hardvard dont cheat get amzing grades if you want to go here
Explanation:
Answer:
An object responds to a force by tending to move in the direction of that force
Explanation:
The inertia of a body can be defined with the help of Newton's second law
F = m a
Where F is the applied force, a is the acceleration of the body and m is the mass
the force and the acceleration are vectors that point in the same direction and m is a scalar constant that relates the two vectors, this scalar constant is called masses and it measures the resistance of the bodies to the change of motion.
From the previous statement we see that the statement that best describes inertia is:
An object responds to force by tending to move in the direction of the force.
Answer:
250N
Explanation:
Given parameters:
Time = 4s
Momentum = 1000kgm/s
Unknown:
Force = ?
Solution:
To solve this problem, we use Newton's second law of motion;
Ft = Momentum
F is the force
t is the time
So;
F x 4 = 1000kgm/s
F = 250N