Answer:
y = 7x - 10
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (2, 4) and (x₂, y₂ ) = (1, - 3)
m =
=
= 7, thus
y = 7x + c ← is the partial equation
To find c substitute either of the 2 points into the partial equation
Using (2, 4), then
4 = 14 + c ⇒ c = 4 - 14 = - 10
y = 7x - 10 ← equation of line
Answer: 0.75
Step-by-step explanation:
Given : Interval for uniform distribution : [0 minute, 5 minutes]
The probability density function will be :-

The probability that a given class period runs between 50.75 and 51.25 minutes is given by :-
![P(x>1.25)=\int^{5}_{1.25}f(x)\ dx\\\\=(0.2)[x]^{5}_{1.25}\\\\=(0.2)(5-1.25)=0.75](https://tex.z-dn.net/?f=P%28x%3E1.25%29%3D%5Cint%5E%7B5%7D_%7B1.25%7Df%28x%29%5C%20dx%5C%5C%5C%5C%3D%280.2%29%5Bx%5D%5E%7B5%7D_%7B1.25%7D%5C%5C%5C%5C%3D%280.2%29%285-1.25%29%3D0.75)
Hence, the probability that a randomly selected passenger has a waiting time greater than 1.25 minutes = 0.75
Answer:
There is not sufficient evidence to support the claim.
Step-by-step explanation:
The claim to be tested is:
The mean respiration rate (in breaths per minute) of students in a large statistics class is less than 32.
To test this claim the hypothesis can be defined as follows:
<em>H₀</em>: The mean respiration rate of students is 32, i.e. <em>μ</em> = 32.
<em>Hₐ</em>: The mean respiration rate of students is less than 32, i.e. <em>μ</em> < 32.
The sample mean respiration rate of students is 31.3.
According to the claim the sample mean is less than 32.
The sample mean value is not unusual if the claim is true, and the sample mean value is also not unusual if the claim is false.
Thus, there is not sufficient evidence to support the claim.
Answer:
In the given figure, line segment is constructed on the triangle parallel to line segment . ... This line can then be considered as a transversal of these parallel lines. Angle and angle are therefore corresponding angles. And as they're corresponding, this means that they're equal.