You would use a mass spectrometer
Alpha particles are released by high mass, proton rich unstable nuclei. The alpha particle is a helium nucleus; it consists of two protons and two neutrons. It contains no electrons to balance the two positively charged protons. Alpha particles are therefore positively charged particles moving at high speeds.
1.Golgi
2. nucleus
3.Endoplasmic
4.Mitochondria
5.Ribosome
6.Lysosome
Answer:
39.7 %
Explanation:
magnesium + oxygen ⟶ magnesium oxide
10.57 g 6.96 g 17.53 g
According to the <em>Law of Conservation of Mass</em>, the mass of the product must equal the total mass of the reactants.
Mass of MgO = 10.57 + 6.96
Mass of MgO = 17.53 g
The formula for mass percent is
% by mass = Mass of component/Total mass × 100 %
In this case,
% O = mass of O/mass of MgO × 100 %
Mass of O = 6.96 g
Mass of MgO = 17.53 g
% O = 6.96/17.53 × 100
% O = 0.3970 × 100
% O = 39.7 %
It would depend on what the substance was. If we're talking ice to water, there doesn't have to be much of a difference; but if we're talking like gold, it has to be 1,948 degrees before it melts.