Ooooh boy alright. So, this may or may not be a limited reactant problem so we need to first find out of it is.
First, how many moles of each substance are there
the molar mass of BCl3 is <span>117.17 grams so 37.5 g / 117.17 is ~ .32 mol.
The molar mass of H2O is 18.02 so 60 / 18.02 is ~ 3.33 mol.
Now, for every 1 mole of BCl3, there are 3 moles of HCl created. Therefore, BCl3 can create ~ .96 moles.
For every 3 moles of H2O, there are 3 moles of HCl created. Therefore, HCl can create ~3.33 moles.
But, there is not enough BCl3 to support that 3.33 moles, only enough for .96 moles, therefore BCl3 is the limiting reactant. Now, to answer the question, simply multiply .96 moles by the molar mass of HCl.
.96 x 36.46 = ~35 g</span>
Answer:
They have properties of both metals and nonmetals
Explanation:
- Elements in the periodic table may be divided into Metals, non-metals, and metalloids.
- Metals are the elements that react by losing electrons to form stable positively charged ions known as cations. Examples are group 1, 2, and 3 elements together with transition elements.
- Non-metals are those elements that react by gaining electrons to form stable negatively charged ions called anions. Examples include oxygen, carbon, sulfur, etc.
- Metalloids, on the other hand, are elements that have both metallic and non-metallic properties.
- Metalloids occur between metals and non-metals in the periodic table. Examples include Boron and silicon among others.
Sjdjdjdjdjdjdjdjdwiwkejjdjdjd
Answer:
Explanation:
As the pH drops, the NH2groups on the lysine side chains become charged and helices can no longer form because of charge repulsion between these groups. This might occur below the pKa of lysine if more than 50% of the lysine residues is to be charged in order to ‘break’ the helix. Another possibility is that the pKa of lysine residues might be different when in polylysine as compared with the monomer (free amino acid) in solution.
One will expect other residues that are positively charged at neutral pH to have a similar profile; namely, arginine and possibly histidine. Both arginine and histidine are bulkier than lysine. Even if there were some rotation of their side chains, steric interference would probably be so severe as to prohibit the formation of an -helix. The transition is inverted because at a low pH glutamate will be neutral whereas at a high pH it will assume a net negative charge (through dissociation of the carboxyl groups on its side chains). One will easily speculate that a polypeptide chain containing both glutamate and lysine residues will be able to form an helix at relatively neutral pHs. Under these conditions, lysines will be mostly positively charged and glutamates will be mostly negatively charged. This will allow these residues to make ionic bonds and salt bridges to stabilize the helix. At very low pH, however, lysine will be mostly positively charged, but it will be near to neutral glutamate residues. At very high pH, the Glu will be negatively charged, but it will be near neutral.
t doesn't represent the concentration of AgCl dissolved in water because we assume that AgCl dissociates into Ag+ ions and Cl- ions when it dissolves in water. It can't represent the amount of solid AgCl in the system because the equilibrium is not affected by the amount of excess solid added to the system.