Answer:
There is one solution
Step-by-step explanation:
2x + y = -1
8x + 3y = -2
Multiply the first equation by -4
-8x -4y = 4
Then add the equations together to eliminate x
-8x -4y = 4
8x + 3y = -2
--------------------
-y = 2
Multiply by -1
y =-2
Now find x
2x+y =-1
2x+-2 =-1
Add 2 to each side
2x-2+2=-1+2
2x=1
Divide by 2
x = 1/2
You line up the decimal points so that similar place values are lined up. it will be easier to add them.
Answer:
A
Step-by-step explanation:
sgryjtyjtyjtsyjtdj
q(x)= x 2 −6x+9 x 2 −8x+15 q, left parenthesis, x, right parenthesis, equals, start fraction, x, squared, minus, 8, x, plus, 1
AURORKA [14]
According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
<h3>What is the behavior of a functions close to one its vertical asymptotes?</h3>
Herein we know that the <em>rational</em> function is q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15), there are <em>vertical</em> asymptotes for values of x such that the denominator becomes zero. First, we factor both numerator and denominator of the equation to see <em>evitable</em> and <em>non-evitable</em> discontinuities:
q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15)
q(x) = [(x - 3)²] / [(x - 3) · (x - 5)]
q(x) = (x - 3) / (x - 5)
There are one <em>evitable</em> discontinuity and one <em>non-evitable</em> discontinuity. According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
To learn more on rational functions: brainly.com/question/27914791
#SPJ1