Answer:
F = 0.78[N]
Explanation:
The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.
<u>For F₁</u>
<u />
<u />
<u>For F₂</u>
![F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D2%2Acos%2860%29%5C%5CF_%7Bx%7D%3D1%5BN%5D%5C%5CF_%7By%7D%3D-2%2Asin%2860%29%5C%5CF_%7By%7D%3D-1.73%5BN%5D)
<u>For F₃</u>
<u />
<u />
Now we can sum each one of the forces in the given axes:
![F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D1-0.866%3D0.134%5BN%5D%5C%5CF_%7By%7D%3D2-1.73%2B0.5%5C%5CF_%7By%7D%3D0.77%5BN%5D)
Now using the Pythagorean theorem we can find the total force.
![F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N]](https://tex.z-dn.net/?f=F%3D%5Csqrt%7B%280.134%29%5E%7B2%7D%20%2B%280.77%29%5E%7B2%7D%7D%5C%5CF%3D%200.78%5BN%5D)
Refer to the diagram shown below.
In 2.4 hours, the distance traveled by the first airplane heading a 51.3° at 750 mph is
a = 750*2.4 = 1800 miles.
The second airplane travels
b = 620*2.4 = 1488 mile
The angle between the two airplanes is
163° - 51.3° = 111.7°
Let c = the distance between the two airplanes after 2.4 hours.
From the Law of Cosines, obtain
c² = a² + b² - 2ab cos(111.7°)
= 3.24 x 10⁶ + 2.2141 x 10⁶
c = 2335.41 miles
Answer: 2335.4 miles