On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
you're most likely to find Bedrock
Answer:
The current in the rods is 171.26 A.
Explanation:
Given that,
Length of rod = 0.85 m
Mass of rod = 0.073 kg
Distance 
The rods carry the same current in the same direction.
We need to calculate the current
I is the current through each of the wires then the force per unit length on each of them is
Using formula of force


Where, m = mass of rod
l = length of rod
Put the value into the formula




Hence, The current in the rods is 171.26 A.
Answer:
Impulse will be 12 kgm/sec
So option (b) will be correct option
Explanation:
We have given mass of the baseball m = 0.15 kg
Ball speed before hit 
Ball speed after hitting
( negative direction due to opposite direction )
We have to find the impulse
We know that impulse is equal; to the change in momentum
So change in momentum = 
So option (b) will be correct option