Answer:
work done = 117 kJ
Explanation:
given data
mass m = 3 kg
constant pressure P = 200 kPa
temperature T = 200°C
solution
we know that work done by steam is express as
work done = pressure × ΔVolume ....................1
and here ΔVolume = final volume - initial volume
we use here steam table and get at pressure 200 kPa
final specific volume = 1.08052 m³/kg
and
initial specific volume = 0.885735 m³/kg
so here
ΔV = 3 × (1.08052 - 0.885735)
ΔV = 0.584 m³
so put value in equation 1 we get
work done by steam = 200 × 0.584
work done = 117 kJ
The steps are;
1- make an observation
2- ask questions
3- form a hypothesis
4- conduct an experiment
5- accept or reject your hypothesis
Answer:
S = Vo t + 1/2 a t^2 distance traveled
t = (V2 - V1) / a = (0 - 21) / -3.5 = 6 sec time to stop
S = 21 * 6 - 3.5 * 6^2 / 2 = 63 m distance traveled
Answer:
THE ANSWER TERMS ARE DEFINED BLOW:-
Explanation:
MOMENTUM- IT IS THE ABILITY TO INCREASE OR DEVELOP CONSTANT FORCE.
KINETIC ENERGY:- IT IS THE ENERGY THAT A PRTICLE POSSES WHEN IT IS ACTUALLY IN MOTION.
POTENTIAL ENERGY:- IT IS THE ENERGY THAT A PARTICLE POSSES WHEN IT ACTUALLY IS IN RESTING STATE.
IN THIS ACIVITY THE SNOWBOARDER IS IN THE MOTION STATE THEREFORE HE POSSES KINETIC ENERGY AND TO MAINTAIN THAT KINEITC ENERG FOR A PERIOD OF TIME,MOMENTUM PLAYS IT'S ROLE.
Answer:
F = - 2 A x - B
Explanation:
The force and potential energy are related by the expression
F = - dU / dx i ^ -dU / dy j ^ - dU / dz k ^
Where i ^, j ^, k ^ are the unit vectors on the x and z axis
The potential they give us is
U (x) = A x² + B x + C
Let's calculate the derivatives
dU / dx = A 2x + B + 0
The other derivatives are zero because the potential does not depend on these variables.
Let's calculate the strength
F = - 2 A x - B