Answer:
This is the information I can provide. I hope it helps
Explanation:
Frequency is measured in units of hertz (Hz) which is equal to one occurrence of a repeating event per second. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency.
Answer:
Explanation:
Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km
Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km
Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite
Orbital potential energy of a satellite A = - GMm / Ra
Orbital potential energy of a satellite B = - GMm / Rb
PE of satellite B /PE of satellite A
= Ra / Rb
= 12740 / 25480
= 1 / 2
b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same
KE of satellite B /KE of satellite A
= 1 / 2
c ) Total energy will be as follows
Total energy = - PE + KE
- P E + PE/2
= - PE /2
Total energy of satellite B / Total energy of A
= 1 / 2
Satellite B will have greater total energy because its negative value is less.
Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
The peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
<h3>Relationship between electric and magnetic field</h3>
The relationship between electric and magnetic field at a given peak electric field is given as;
c = (E₀) / (B₀)
where;
- c is speed of light
- E₀ is the peak electric field
- B₀ is the peak magnetic field
B₀ = E₀ / c
B₀ = (2.9) / (3 x 10⁹)
B₀ = 9.67 x 10⁻¹⁰ T
Thus, the peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
Learn more about peak magnetic field here: brainly.com/question/24487261