1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
14

How do asteroids and comets differ?

Physics
1 answer:
aalyn [17]3 years ago
4 0

Answer:

Explained

Explanation:

Asteroids: Asteroids are generally made up of rocky material, metals and their size are large in  comparison to comets. Asteroid belt is found between Jupiter and Mars.

Comets: Comets are made up of ice, dust and rocky material. Generally smaller in size and are far from the Sun. With each orbit nearing the sun ice of the comet vaporize in form of blazing tail.

You might be interested in
Which of the following temparature is approximately equal to room temperature
Artist 52 [7]

Hello there! :)

\huge\boxed{\text{C. 293K}}

Room temperature is approximately 20°C.

We can automatically eliminate choices B and D since they are not equal to 20°C.

Since some choices use the Kelvin scale, we can convert from Celsius to Kelvin using a simple formula:

K = C° + 273

Find room temperature in degrees <u>Kelvin</u>:

K = 20° + 273

K = 293°

Thus, the correct choice would be <u>C. 293K.</u>

6 0
3 years ago
Bài 1. Ở nhiệt độ 17°C, có bao nhiêu phần trăm phân tử khí có các vận tốc sai khác
Damm [24]

Answer:

hi i only dont understand want ur saying

7 0
2 years ago
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
What mechanism is most responsible for generating the internal heat of Io that drives its volcanic activity?
Ghella [55]

Answer:

Tidal heating

Explanation:

Tidal force is the ability of a massive body to produce tides on another body. The tidal force depends on the mass of the body that produces the tides and the distance between the two bodies.

Tidal forces can cause the destruction of a satellite that orbits a planet or a comet that is too close to the Sun or a planet. When the orbiting body crosses the "Roche boundary", the tidal forces along the body are more intense than the cohesion forces that hold the body together.

Tidal friction is the force between the Earth's oceans and ocean floors caused by the gravitational attraction of the Moon. The Earth tries to transport the waters of the oceans with it, while the Moon tries to keep them under it and on the opposite side of the Earth. In the long term, tidal friction causes the Earth's rotation speed to decrease, thus shortening the day. In turn, the Moon increases its angular momentum and gradually spirals away from Earth. Finally, when the day equals the orbital period of the Moon (which will be about 40 times the length of the current day), the process will cease. Subsequently, a new process will begin when the power to raise tides from the Sun takes angular momentum from the Earth-Moon system. The Moon will then spiral towards Earth until it is destroyed when it enters the "Roche boundary."

<u>Tidal heating </u>

It is the warming caused by the tidal action on a planet or satellite. The most important example of tidal heating in the Solar System is the effect of Jupiter on its Io satellite, in which the tidal effects produce such high temperatures that the interior of the satellite melts, producing volcanism.

8 0
3 years ago
What is Aeronautical Science?
MissTica

Answer:

Aeronautical science is the science of flight, and this field relates to careers involved with the design and development of aircraft. Aeronautical engineers study how flight may be achieved within the earth's atmosphere and use that knowledge to pilot or design airplanes.

Explanation:

4 0
3 years ago
Other questions:
  • What is the pressure of a 59.6-l gas sample containing 3.01 mol of gas at 44.9°c? (r = 0.0821 l • atm/(k • mol), 1 atm = 760 tor
    9·1 answer
  • A 331 N stoplight is hanging in equilibrium from cables as shown. The tension in the right cable is 550 N, and it makes an angle
    7·1 answer
  • A car travels at a steady 40.0 m/s around a horizontal curve of radius 200 m. What is the minimum coefficient of static friction
    14·1 answer
  • A makeshift swing is constructed by making a loop in one end of a rope and tying the other end to a tree limb. A child is sittin
    12·1 answer
  • How does electricity work in a vacuum
    9·1 answer
  • Throwing a football is what type of energy
    6·2 answers
  • What properties of radio waves makes them suitable for sending signals in mountainous regions?
    6·1 answer
  • A race car circles 10 times around a circle with a diameter of 7 km track in 50 min. Using SI
    8·1 answer
  • A 3.8 kg ball is rolling eastward across a horizontal,
    14·1 answer
  • The order of magnitude of 1001 is​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!