1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
14

How do asteroids and comets differ?

Physics
1 answer:
aalyn [17]3 years ago
4 0

Answer:

Explained

Explanation:

Asteroids: Asteroids are generally made up of rocky material, metals and their size are large in  comparison to comets. Asteroid belt is found between Jupiter and Mars.

Comets: Comets are made up of ice, dust and rocky material. Generally smaller in size and are far from the Sun. With each orbit nearing the sun ice of the comet vaporize in form of blazing tail.

You might be interested in
The solar nebula was a
tangare [24]

Solar Nebula

Our solar system began forming within a concentration of interstellar dust and hydrogen gas called a molecular cloud. The cloud contracted under its own gravity and our proto-Sun formed in the hot dense center. The remainder of the cloud formed a swirling disk called of the solar nebula.

4 0
4 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
An object whose weight is 10kg is placed on smooth plane inclined at 30° to the horizontal. find the acceleration of the object
velikii [3]

Answer:

4.9 m/s²

Explanation:

Draw a free body diagram.  There are two forces on the object:

Weight force mg pulling straight down,

and normal force N pushing perpendicular to the plane.

Sum the forces in the parallel direction.

∑F = ma

mg sin θ = ma

a = g sin θ

a = (9.8 m/s²) (sin 30°)

a = 4.9 m/s²

8 0
3 years ago
8. Il An 8.00 kg package in a mail-sorting room slides 2.00 m down a
Vitek1552 [10]

Answer:

See below

Explanation:

Normal force = m g cos 53 = 8 kg * 9.8 m/s^2 * cos 53 = 47.1823 N

  no work is done by this force

Force friction = coeff friction * force normal = .4 * 47.1823 = 7.55 N

   work of friction = 7.55 * 2 m = 15.1 j

Force Downplane = mg sin 53 = 62.61  N

    work = 62.61 * 2 = 125.22 j

Net Force downplane =   force downplane - force friction = 55.06 N

net Work = force * distance = 55.06 N * 2 M = 110.12 j

3 0
2 years ago
Which of the following wire gage sizes is the thickest? <br> A. 8<br> B. 10<br> C. 14<br> D. 0
maks197457 [2]
A because it's the smaller the thicker you just can't have 0 gage
5 0
3 years ago
Other questions:
  • Plz help
    12·1 answer
  • The ___ model of the atom states that an electron's exact location within an atom can not be determined, but its probable locati
    11·1 answer
  • A model of an atom is shown above. The blue dots represent electrons, and the red dot represents the nucleus. This model accurat
    9·2 answers
  • the fabric of the hot air balloon can stretch, but it does not allow air to pass through it. think about the change in air densi
    6·1 answer
  • 6. A snowball that will be used to build a snowman is at the top of the only hill in town and weighs 22
    8·1 answer
  • What is heat energy on earth escapes into space
    12·1 answer
  • 12. If you cut a wooden block in half, the density will:
    9·2 answers
  • If the temperature of the solar surface is 5800 K and Wien's law for the peak wavelength of the spectrum of the Sun, assumed to
    7·1 answer
  • How do you write a letter to the editor of a newspaper in reference to bullying
    10·1 answer
  • All satellite eventually lose their orbital energy and plummet to earth because of______.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!