The best use of an atomic model to explain the charge of the particles in Thomson's beams is:
<u>An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.</u>
<u>Explanation:</u>
In Thomson's model, an atom comprises of electrons that are surrounded by a group of positive particles to equal the electron's negative particles, like negatively charged “plums” that are surrounded by positively charged “pudding”.
Atoms are composed of a nucleus that consists of protons and neutrons . Electron was discovered by Sir J.J.Thomson. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
-
atoms are spheres of positive charge
- electrons are dotted around inside
Thomson's conclusions made him to propose the Rutherford model of the atom where the atom had a concentrated nucleus of positive charge and also large mass.
Answer:
The normal force will be "122.8 N".
Explanation:
The given values are:
Weight,
W = 100 N
Force,
F = 40 N
Angle,
θ = 35.0°
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
Answer: The energy carried by an electromagnetic wave is proportional to the frequency of the wave.
Explanation:
Electromagnetic waves that are of higher energy than visible light (higher frequency, shorter wavelength) include ultraviolet light, X-rays, and gamma rays.
<span>Using the kinematic equations below, we can calculate the initial velocity required.
Angle of projectile = 60 degrees
Acceleration due to gravity (Ay) = -10 m/s^2 (negative because downward)
Height of projectile (Dy) = 2m
Vfy^2=Voy^2 +2*Ay*Dy
Vfy = 0 m/s because the vertical velocity slows to zero at the height of its trajection.
So... 0 = Voy^2 + 2(-10)(2)
0 = Voy^2 - 40
40 = Voy^2
Sqrt40 = Voy
6.32 m/s = Voy
THIS IS NOT THE ANSWER. THIS IS JUST THE INITIAL VELOCITY IN THE Y DIRECTION.
Using trigonometry, Tan 60 = Voy/Vox. Tan 60 = 6.32/Vox. Vox*Tan 60 = Vox
Vox = 10.95 m/s. Now, using Vox = 10.95 and Voy = 6.32, we can use pythagorean theorem to find the total Vo. A^2 +B^2 = C^2
10.95^2 + 6.32^2 = C^2
Solving for C = 12.64 m/s
This is the velocity required to hit the surface. You can also calculate a bunch of other stuff now using the other kinematic equations.
V = 12.64 m/s</span>
The answer is <span>nitrogen triodide
Did I help?
please mark me brainliest answer.</span>