![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ N(\stackrel{x_1}{-3}~,~\stackrel{y_1}{10})\qquad A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ NA=\sqrt{(6+3)^2+(3-10)^2}\implies NA=\sqrt{130} \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad D(\stackrel{x_1}{6}~,~\stackrel{y_1}{-1}) \\\\\\ AD=\sqrt{(6-6)^2+(-1-3)^2}\implies AD=4 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20N%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B10%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20NA%3D%5Csqrt%7B%286%2B3%29%5E2%2B%283-10%29%5E2%7D%5Cimplies%20NA%3D%5Csqrt%7B130%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20D%28%5Cstackrel%7Bx_1%7D%7B6%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%20%5C%5C%5C%5C%5C%5C%20AD%3D%5Csqrt%7B%286-6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20AD%3D4%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now that we know how long each one is, let's plug those in Heron's Area formula.
![\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{130}\\ b=4\\ c=\sqrt{202}\\[1em] s=\frac{\sqrt{130}+4+\sqrt{202}}{2}\\[1em] s\approx 14.81 \end{cases} \\\\\\ A=\sqrt{14.81(14.81-\sqrt{130})(14.81-4)(14.81-\sqrt{202})} \\\\\\ A=\sqrt{324}\implies A=18](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B130%7D%5C%5C%20b%3D4%5C%5C%20c%3D%5Csqrt%7B202%7D%5C%5C%5B1em%5D%20s%3D%5Cfrac%7B%5Csqrt%7B130%7D%2B4%2B%5Csqrt%7B202%7D%7D%7B2%7D%5C%5C%5B1em%5D%20s%5Capprox%2014.81%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B14.81%2814.81-%5Csqrt%7B130%7D%29%2814.81-4%29%2814.81-%5Csqrt%7B202%7D%29%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B324%7D%5Cimplies%20A%3D18)
Answer:
x=-9, y=5. (-9, 5).
Step-by-step explanation:
x-3y=-24
5x+8y=-5
--------------
x=-24+3y
5(-24+3y)+8y=-5
-120+15y+8y=-5
-120+23y=-5
23y=-5-(-120)
23y=-5+120
23y=115
y=115/23
y=5
x-3(5)=-24
x-15=-24
x=-24+15
x=-9
Answer:
m < -6
Step-by-step explanation:
plz can u mark brainliest if correct. thank you so much.
Answer:
x + 2y ≤ 100 and x + 3y ≤ 400
Maximum profit = 6x + 5y.
Step-by-step explanation:
Let there be x number of small dishes and y number of large dishes to maximize the profit.
So, total profit is P = 6x + 5y .......... (1)
Now, the small dish uses 1 cup of sauce and 1 cup of cheese and the large dish uses 2 cups of sauce and 3 cups of cheese.
So, as per given conditions,
x + 2y ≤ 100 ........ (1) and
x + 3y ≤ 400 .......... (2)
Therefore, those are the constraints for the problem. (Answer)
It’s not possible because it needs to be convicted to feet then yards then centimeter but you can add it you will get something way different I tried before