1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
3 years ago
6

How many millimeters are in 100 cm

Mathematics
2 answers:
jeka943 years ago
8 0
1000 millimeters = 100 centimeters 
solniwko [45]3 years ago
7 0
1,000 millimeters hope that helps
You might be interested in
Juliet needs to rewrite 3(x+2)=6y in slope intercept form so she can easily graph it which step would be correct to start the pr
otez555 [7]
<span>B:she could divided both sides by 3 to get x+2=2y</span>
6 0
3 years ago
Read 2 more answers
(1 point) (a) Find the point Q that is a distance 0.1 from the point P=(6,6) in the direction of v=⟨−1,1⟩. Give five decimal pla
natima [27]

Answer:

following are the solution to the given points:

Step-by-step explanation:

In point a:

\vec{v} = -\vec{1 i} +\vec{1j}\\\\|\vec{v}| = \sqrt{-1^2+1^2}

    =\sqrt{1+1}\\\\=\sqrt{2}

calculating unit vector:

\frac{\vec{v}}{|\vec{v}|} = \frac{-1i+1j}{\sqrt{2}}

the point Q is at a distance h from P(6,6) Here, h=0.1  

a=-6+O.1 \times \frac{-1}{\sqrt{2}}\\\\= 5.92928 \\\\b= 6+O.1 \times \frac{-1}{\sqrt{2}} \\\\= 6.07071

the value of Q= (5.92928 ,6.07071  )

In point b:

Calculating the directional derivative of f (x, y) = \sqrt{x+3y} at P in the direction of \vec{v}

f_{PQ} (P) =\fracx{f(Q)-f(P)}{h}\\\\

            =\frac{f(5.92928 ,6.07071)-f(6,6)}{0.1}\\\\=\frac{\sqrt{(5.92928+ 3 \times 6.07071)}-\sqrt{(6+ 3\times 6)}}{0.1}\\\\= \frac{0.197651557}{0.1}\\\\= 1.97651557

\vec{v} = 1.97651557

In point C:

Computing the directional derivative using the partial derivatives of f.

f_x(x,y)= \frac{1}{2 \sqrt{x+3y}}\\\\ f_x (6,6)= \frac{1}{2 \sqrt{22}}\\\\f_x(x,y)= \frac{1}{\sqrt{x+3y}}\\\\ f_x (6,6)= \frac{1}{\sqrt{22}}\\\\f_{(PQ)}(P)= (f_x \vec{i} + f_y \vec{j}) \cdot \frac{\vec{v}}{|\vec{v}|}\\\\= (\frac{1}{2 \sqrt{22}}\vec{i} + \frac{1}{\sqrt{22}} \vec{j}) \cdot   \frac{-1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}} \vec{j}

4 0
3 years ago
Dada la sucesión an = 1700 + 4,1· n2 + 304,9· n
shutvik [7]

Concluimos que la opción correcta es <em>"Solo II"</em>.

Una expresión es una sucesión aritmética si y solo si existe entre dos elementos <em>consecutivos</em> cualesquiera de la serie la misma diferencia. La sucesión aritmética es definida por una expresión de la forma:

a_{n} = a + b\cdot n, n\in \mathbb{N} (1)

Donde a,b son coeficientes de la sucesión.

Asimismo, una expresión es una sucesión geométrica si y solo si entre dos elementos <em>consecutivos</em> cualesquiera de la serie existe la misma razón. La sucesión geométrica es definida por una expresión de la forma:

a_{n} = a\cdot r^{b\cdot n}, n\in \mathbb{N} (2)

Donde a, b, r son coeficientes de la sucesión.

Por último, una expresión es una sucesión monótona creciente si dados dos elementos <em>consecutivos</em> de una serie, el elemento posterior es siempre mayor que el elemento anterior. Matemáticamente, debe satisfacerse la siguiente condición:

\frac{a_{n+1}}{a_{n}} > 1, n\in \mathbb{N} (3)

Esta claro por inspección directa que la sucesión dada no es aritmética ni geométrica y cabe comprobar si es monótona creciente. Valiéndonos de (3), realizamos las operaciones algebraicas pertinentes:

r = \frac{1700 + 4,1\cdot (n+1)^{2}+304,9\cdot (n+1)}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot (n^{2}+2\cdot n +1) +304,9\cdot (n+1)}{1700 + 4.1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot n^{2}+304,9\cdot n+4,1\dot (2\cdot n +1) +304.9}{1700+4,1\cdot n^{2}+304,9\cdot n}

r = 1 + \frac{8,2\cdot n +309}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

Como puede apreciarse, r > 1. Por tanto, la sucesión es monótona y creciente.

En consecuencia, concluimos que la opción correcta es <em>"Solo II"</em>.

Invitamos cordialmente a leer esta pregunta sobre sucesiones: brainly.com/question/21709418

4 0
3 years ago
The vertex form of the equation of a parabola is y = (x - 3)2 + 36.
IrinaVladis [17]
- B. y = x2 - 6x + 45
6 0
2 years ago
Why does the shape of the distribution of the weights of russet potatoes tend to be symmetrical?
Sergio [31]

Answer:

Mean ≈ Median

6 0
3 years ago
Read 2 more answers
Other questions:
  • 1) Matthew worked 354 hours in a week
    14·1 answer
  • you build four scale models of the Empire State Building. The smallest model is 3 centimeters tall. The height of each model is
    11·2 answers
  • A total of 29,183 votes were cast in an election.the winning candidate in the election received 6.13% of the votes.which of the
    14·1 answer
  • 5+25+125+625+3125+15625 rewrite each series using sigma notation
    9·1 answer
  • 15. Given A (X) define the characteristic function A : X {0, 1} by Suppose that A and B are subsets of X. (i) Prove that the fun
    15·1 answer
  • Solve the system of equations<br> X - 3y + z = 1<br> 2x - y - 2z = 2<br> X+ 2y - 32 = -1
    10·1 answer
  • For the equation y=1-2x,find the value of y when<br> (a)x=-4,<br> (b)x=-2,<br> (c)x=0,<br> (d)x=2.
    9·1 answer
  • HELP THIS GURL OUT WOULD YA? PLEASE
    12·2 answers
  • Solve the inequality. Graph the solution.
    9·2 answers
  • Forty thousand in numbers​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!