Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
Flame of fire could get put out with water
Answer:
Force, F = 20240 N
Explanation:
It is given that,
Pressure exerted by the four tires of an automobile, 
Area of each tire, 
Area of 4 tires, 
We know that the pressure exerted by an object is equal to the force per unit area. Its formula is given by :



F = 20240 N
So, the weight of the automobile is 20240 N. Hence, this is the required solution.
Answer:
Answer
Explanation:
A solid because each solids has various shapes and volume. scientist uses variety of tools such as, Cylinder,scaler, etc to differentiate the solids.
Answer:
wavelength = 0.968 m
frequency = 39.02 Hz
Explanation:
given data
mass = 0.0127 kg
force = 9.33 N
length = 1.93 m
to find out
wavelength and Frequency
solution
we know here linear density that is
linear density =
.........1
linear density =
linear density = 6.5803 ×
kg/m
so
wavelength will be here
wavelength =
..............2
here n = 4 for forth harmonic
wavelength = 
wavelength = 0.968 m
and
frequency will be for 4th normal mode of vibration is
frequency =
..........3
frequency = 
frequency = 1.036269 × 37.654594
frequency = 39.02 Hz