Answer:
Astronomers have no theoretical explanation for the ""hot Jupiters"" observed orbiting some other stars.
False
Explanation:
The “hot Jupiters” joint word startes to be used to be able to describe planets like 51 Pegasi b, a planet with a 10-day-or-less orbit and a mass 25% or greater than Jupitere, circling a sun-like star planet in 1995, which was found by astronomers Michel Mayor and Didier Queloz, who were awarded the 2019 Nobel Prize for Physics along with the cosmologist James Peebles for their “contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos.”
Now we know a total of 4,000-plus exoplanets, but only a few more than 400 meet the definition of the enigmatic hot Jupiters which, tell us a lot about how planetary systems form, and what kinds of conditions cause extreme results.
In a 2018 paper in the Annual Review of Astronomy and Astrophysics, astronomers Rebekah Dawson of the Pennsylvania State University and John Asher Johnson of Harvard University reviewed on how hot Jupiters might have formed, and would be the meaning for the rest of the planets in the galaxy.
Answer:
If a particle is affected by a wave, then the particles are displaced. They move along the direction of the wave. Hence, After a wave passes through a medium, particles in the medium are moved along with the wave.
Explanation:
hope this helps you
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Answer: A mixture is a combination of two or more substances (elements or compounds) which is not done chemically. Mixtures are two types Homogeneous Mixtures and Heterogeneous mixtures.
Answer:
call 7194936846 and ill help u out
Explanation: