Area=54
l2=54
l =3√6
volume=(3√6)3
=396.81
Answer:
The time he can wait to pull the cord is 41.3 s
Explanation:
The equation for the height of the skydiver at a time "t" is as follows:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).
First, let´s calculate how much time will it take for the skydiver to hit the ground if he doesn´t activate the parachute.
When he reaches the ground, the height will be 0 (placing the origin of the frame of reference on the ground). Then:
y = y0 + v0 · t + 1/2 · g · t²
0 m = 15000 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 m = 15000 m - 4.9 m/s² · t²
-15000 m / -4.9 m/s² = t²
t = 55.3 s
Then, if it takes 4.0 s for the parachute to be fully deployed and the parachute has to be fully deployed 10.0 s before reaching the ground, the skydiver has to pull the cord 14.0 s before reaching the ground. Then, the time he can wait before pulling the cord is (55.3 s - 14.0 s) 41.3 s.
B 20 m/s
It should go to 100 that fast nor 40
Non metals produce something called protons they are ions
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.