The electromagnetic force<span> holds atoms and molecules together.
like a magnet's pull on steel.</span>
I suppose right answer is d because staellite means an object that move around the larger object and Jupiter also moves around the Sun
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile,
, is given by the following equation;
![h_{max} = \dfrac{\left (u \times sin(\theta) \right)^2}{2 \cdot g}](https://tex.z-dn.net/?f=h_%7Bmax%7D%20%3D%20%5Cdfrac%7B%5Cleft%20%28u%20%5Ctimes%20sin%28%5Ctheta%29%20%5Cright%29%5E2%7D%7B2%20%5Ccdot%20g%7D)
Therefore, substituting the known values for the pebble, we have;
![h_{max} = \dfrac{\left (19 \times sin(36 ^{\circ}) \right)^2}{2 \times 9.8} = 6.3633894140470403035477570509439](https://tex.z-dn.net/?f=h_%7Bmax%7D%20%3D%20%5Cdfrac%7B%5Cleft%20%2819%20%5Ctimes%20sin%2836%20%5E%7B%5Ccirc%7D%29%20%5Cright%29%5E2%7D%7B2%20%5Ctimes%209.8%7D%20%3D%206.3633894140470403035477570509439)
Therefore, the maximum height of the pebble projectile,
≈ 6.4 m.
Answer:
The force required to move the quarterback with linebacker is <u>1215 N</u>
Explanation:
![\text { Mass of linebacker } \mathrm{m}_{2}=150 \mathrm{kg}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Mass%20of%20linebacker%20%7D%20%5Cmathrm%7Bm%7D_%7B2%7D%3D150%20%5Cmathrm%7Bkg%7D)
![\text { Mass of quarterback } \mathrm{m}_{2}=120 \mathrm{kg}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Mass%20of%20quarterback%20%7D%20%5Cmathrm%7Bm%7D_%7B2%7D%3D120%20%5Cmathrm%7Bkg%7D)
![\text { Moved at an acceleration }(a)=4.5 \mathrm{m} / \mathrm{s}^{2}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Moved%20at%20an%20acceleration%20%7D%28a%29%3D4.5%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D%5E%7B2%7D)
Using Newton's second law, it is established that F = Ma
Where F is net force acting on the system, a is the acceleration and M is mass of the two object ![\left(m_{1}+m_{2}\right)](https://tex.z-dn.net/?f=%5Cleft%28m_%7B1%7D%2Bm_%7B2%7D%5Cright%29)
Now consider both
as a system, so net force acting on the system is ![\text { Force }=\left(m_{1}+m_{2}\right) a](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Force%20%7D%3D%5Cleft%28m_%7B1%7D%2Bm_%7B2%7D%5Cright%29%20a)
Substitute the given values in the above formula,
![\text { Force }=(150+120) \mathrm{kg} \times 4.5 \mathrm{m} / \mathrm{s}^{2}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Force%20%7D%3D%28150%2B120%29%20%5Cmathrm%7Bkg%7D%20%5Ctimes%204.5%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D%5E%7B2%7D)
![\text { Force }=270 \mathrm{kg} \times 4.5 \mathrm{m} / \mathrm{s}^{2}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Force%20%7D%3D270%20%5Cmathrm%7Bkg%7D%20%5Ctimes%204.5%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D%5E%7B2%7D)
Force = 1215 N
<u>1215 N </u>is the force required to move the quarterback with linebacker.