<h3>Answers:</h3>
1) 2 Units of Ozone
2) 3 Units of Ozone
3) 9 Units of Ozone
<h3>Solution:</h3>
1) From 6 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
6 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (6 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 2 Units of Ozone
2) From 9 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
9 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (9 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 3 Units of Ozone
3) From 27 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
27 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (27 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 9 Units of Ozone
If the temperature is increased then reaction will shift to the left because heat is absorbed.
<h3>What is equilibrium state?</h3>
Equilibrium of any reaction is that state in which concentration of reactant and concentration of product will be constant.
Given chemical reaction is:
A(g) + 2B(g) ⇄ C(g) + D(g)
From the equilibrium state reaction will move only that side which will contribute to maintain the stable state. In the forward reaction heat is released as mention in the question. So, when the temperature of reaction is increased then it shifts towards the left side by absorbing the heat and maintain the stability.
Hence, option (2) is correct, i.e. It will shift to the left because heat is absorbed.
To know more about equilibrium, visit the below link:
brainly.com/question/14297698
black would be BB .
dominant gene is B.
phenotyope is where it says white fur.
recessive gene is b.
white is bb
Answer:
[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.
Explanation:
Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.
Analysis:
H₂CO₃(aq) ⇄ H⁺(aq) + HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷
C(i) 0.115M 0 0
ΔC -x +x +x
C(eq) 0.115M - x x x
≅ 0.115M
Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M
= 4.3 x 10⁻⁷ => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.
In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion concentration, the hydroxide ion concentration is then calculated from
[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.
________________________________________________________
NOTE: The 2.32 x 10⁻⁴M value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.
Mezoic era began 252m years ago and ended 6.6m years ago.
It was a time of geological and biological transition. During this era the continents began to drift to their present configuration.
3 of the largest mass extinction occurred at this era. One which include the dinosaurs.
I hope this helped. :)