<span>NaCH is not an element, it is a compound. An element can be found and identified on the periodic table to elements. A compound is a combination of two of more elements. NaCH is composed of three elements: Na (sodium), C (carbon) and H (hydrogen), making it a compound.</span>
The answer for this problem would be:
Assuming non-relativistic momentum, then you have:
ΔxΔp = mΔxΔv = h / (4)
Δv = h / (4πmΔx)
m ~ 1.67e-27 h ~ 6.62e-34,Δx = 4e-15 -->
Δv ~ 6.62e-34 / (4π * 1.67e-27 * 4e-15) ~ 7,886,270 m/s ~ 7.89e6 m/s
That's about 1% of the speed of light, the assumption that it's non-relativistic.
True, because water balance is the balance between intake and output
Answer:
a) Yes
b) 7 rad/s
c) 0.01034 J
Explanation:
a)
Yes the angular momentum of the block is conserved since the net torque on the block is zero.
b)
m = mass of the block = 0.0250 kg
w₀ = initial angular speed before puling the cord = 1.75 rad/s
r₀ = initial radius before puling the cord = 0.3 m
w = final angular speed after puling the cord = ?
r = final radius after puling the cord = 0.15 m
Using conservation of angular momentum
m r₀² w₀ = m r² w
r₀² w₀ = r² w
(0.3)² (1.75) = (0.15)² w
w = 7 rad/s
c)
Change in kinetic energy is given as
ΔKE = (0.5) (m r² w² - m r₀² w₀²)
ΔKE = (0.5) ((0.025) (0.15)² (7)² - (0.025) (0.3)² (1.75)²)
ΔKE = 0.01034 J
Answer:
the reason for the acceleration month that the coefficient of kinetic friction is less than the coefficient of satic frictionExplanation:
This exercise uses Newton's second law with the condition that the acceleration is zero, by the time the body begins to slide. At this point the balance of forces is
fr- w || = 0
The expression for friction force is that it is proportional to the coefficient of friction by normal.
fr = μ N
When the system is immobile, the coefficient of friction is called static coefficient and has a value, this is due to the union between the surface, when the movement begins some joints are broken giving rise to coefficient of kinetic friction less than static.
In consequence a lower friction force, which is why the system comes out of balance and begins to accelerate.
μ kinetic <μ static
In all this movement the normal with changed that the angle of the table remains fixed.
Consequently, the reason for the acceleration month that the coefficient of kinetic friction is less than the coefficient of satic friction