Answer:
The answer is 218
Explanation:
Weight = mass * gravitational acceleration
weight is represented by F
F = 25kg (8.7)
(I'm pretty sure that you don't have to include the meters per second/per second thing)
Answer:
D. crystalline solid that conducts current under certain conditions
Explanation:
Semiconductors are crystalline solids that has the ability to conduct electrical currents but on certain conditions e.g heat. The conduction of semiconductors is less than that of conductors (metals) but more than insulators (nonmetals), hence, they are said to be intermediates of conductors and insulators in terms of electrical conductivity.
Examples of semiconductors are silicon, boron, carbon, germanium, arsenic etc.
<span><span>Velocity is a vector, and the initial and final ones are in opposite directions.
There must have been acceleration in order to change the direction of motion.</span>
A) No. The initial and final velocities are the same.
This is all wrong, and not the correct choice.
It's "Yes", and the initial and final velocities are NOT the same.
B) Yes. The ball had to slow down in order to change direction.
This is poor, and not the correct choice.
The "Yes" is correct, but the explanation is bad.
Acceleration does NOT require any change in speed.
C) No. Acceleration is the change in velocity. The ball's velocity is constant.
This is all wrong, and not the correct choice.
It's "Yes", there IS acceleration, and the ball's velocity is NOT constant.
D) Yes. Even though the initial and final velocities are the same, there is a change in direction for the ball.
This choice is misleading too.
The "Yes" is correct ... there IS acceleration.
The change in direction is the reason.
The initial and final velocities are NOT the same. Only the speeds are.
</span>
Answer:
It takes 77 N
Explanation:
Using Newton's second law of motion, F=ma (Force equals mass times acceleration. Since the mass of the couch is 385 kg and the target acceleration is 0.2 m/s, you simply multiply mass times acceleration (ma) to get the total force, or 77 N.
Answer: d. I or II
Explanation: A traveling wave has speed that depends on characteristics of a medium. Characteristics like linear density (μ), which is defined as mass per length.
Tension or Force (
) is also related to the speed of a moving wave.
The relationship between tension and linear density and speed is ginve by the formula:

So, for the traveling waves generated on a string fixed at both ends described above, ways to increase wave speed would be:
1) Increase Tension and maintaining mass and length constant;
2) Longer string will decrease linear density, which will increase wave speed, due to their inversely proportional relationship;
Then, ways to increase the wave speed is
I. Using the same string but increasing tension
II. Using a longer string with the same μ and T.