Answer:
Height of cliff = S = 20 m (Approx)
Explanation:
Given:
Initial velocity = 8 m/s
Distance s = 16 m
Starting acceleration (a) = 0
Computation:
s = ut + 1/2a(t)²
16 = 8t
t = 2 sec
Height of cliff = S
Gravitational acceleration = 10 m/s
S = 1/2a(t)²
S = 1/2(10)(2)²
Height of cliff = S = 20 m (Approx)
Thank you for the message my friend, yoU have a good day as well :)
Answer: 49.5 m
Explanation:
The speed of sound is given by a relation between the distance and the time :
(1)
Where:
is the speed of sound in air (taking into account this value may vary according to the medium the sound wave travels)
since we are told th hunter was initially 412.5 meters from the cliff and then moves a distance towards the cliff
Since the time given as data (2.2 s) is the time it takes to the sound wave to travel from the hunter's gun and then go back to the position where the hunter is after being reflected by the cliff
Having this information clarified, let's isolate and then find :
(2)
(3)
Finding :
This is the distance at which the hunter is from the cliff.
Answer:it experiences no force
Explanation:
a charge moving in a direction parallel to the magnetic field experience no force.since the angle e is 0,force would also be 0
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.