1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
9

The gravitational field strength on earth is 10n/kg. find the weight of an object of mass 25kg​

Physics
2 answers:
vodka [1.7K]3 years ago
6 0

Answer:

250N

Explanation:

weight = Mass(in kg) × Gravitational field strength

25 × 10 = 250N

Andrei [34K]3 years ago
5 0

Answer:

250 N

Explanation:

Refer the attachment for explanation.

You might be interested in
A ball is launched from ground level and hits the ground again after an elapsed time of 4 seconds and after traveling a horizont
jeka94

Answer:

1)a. It is constant the whole time the ball is in free-fall.

2)b. = 14 m/s

3) e. = 19.6 m/s

Explanation:

1) given that the only force acting on the ball is gravity, gravity acts along the vertical axis. Since no other force acts on the ball then the horizontal velocity will remain constant all through the flight since there is no horizontal force acting on the ball.

2) speed = distance/time

horizontal distance = 56m

Time = 4 seconds

Speed = 56m/4s = 14m/s

3) acceleration due to gravity g = 9.8m/s^2

Initial vertical velocity = u

Final vertical velocity = v = -u

Using the law of motion;

v = u + at

a = acceleration = -g = -9.8m/s^2

t = time of flight = 4

Substituting the values;

-u = u - 4(9.8)

-2u = -4(9.8)

u = -4(9.8)/-2

u = 2(9.8) = 19.6 m/s

Initial vertical velocity = u = 19.6 m/s

3 0
3 years ago
Question 4 (18 marks) (a) During a Physics Lab experiment, 1 st year SFY students analyzed the behavior of capacitors by connect
Nataly_w [17]

Answer:

1.) 274.5v

2.) 206.8v

Explanation:

1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.

The potential difference and charge across EACH capacitor will be

V = Voe

Where Vo = initial voltage

e = natural logarithm = 2.718

For the first capacitor 2.50 µF,

V = Vo × 2.718

746 = Vo × 2.718

Vo = 746/2.718

Vo = 274.5v

To calculate the charge, use the below formula.

Q = CV

Q = 2.5 × 10^-6 × 274.5

Q = 6.86 × 10^-4 C

For the second capacitor 6.80 µF 

V = Voe

562 = Vo × 2.718

Vo = 562/2.718

Vo = 206.77v

The charge on it will be

Q = CV

Q = 6.8 × 10^-6 × 206.77

Q = 1.41 × 10^-3 C

B.) Using the formula V = Voe again

165 = Vo × 2.718

Vo = 165 /2.718

Vo = 60.71v

Q = C × 60.71

Q = C

4 0
3 years ago
Scientific notation and graphing <br><br> 0.0004580 to scientific notation
Vlada [557]

Scientific Notation: 4.580 x 10^-4

Scientific e Notation: 4.580e-4

4 0
3 years ago
Read 2 more answers
A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g
7nadin3 [17]

Answer:

(a) r = 1.062·R_E = \frac{531}{500} R_E

(b) r = \frac{33}{25} R_E

(c) Zero

Explanation:

Here we have escape velocity v_e given by

v_e =\sqrt{\frac{2GM}{R_E} } and the maximum height given by

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r}

Therefore, when the initial speed is 0.241v_e we have

v = 0.241\times \sqrt{\frac{2GM}{R_E} } so that;

v² = 0.058081\times {\frac{2GM}{R_E} }

v² = {\frac{0.116162\times GM}{R_E} }

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r} is then

\frac{1}{2} {\frac{0.116162\times GM}{R_E} }-\frac{GM}{R_E} = -\frac{GM}{r}

Which gives

-\frac{0.941919}{R_E} = -\frac{1}{r} or

r = 1.062·R_E

(b) Here we have

K_i = 0.241\times \frac{1}{2} \times m \times v_e^2 = 0.241\times \frac{1}{2} \times m  \times \frac{2GM}{R_E} = \frac{0.241mGM}{R_E}

Therefore we put  \frac{0.241GM}{R_E} in the maximum height equation to get

\frac{0.241}{R_E} -\frac{1}{R_E} =-\frac{1}{r}

From which we get

r = 1.32·R_E

(c) The we have the least initial mechanical energy, ME given by

ME = KE - PE

Where the KE = PE required to leave the earth we have

ME = KE - KE = 0

The least initial mechanical energy to leave the earth is zero.

3 0
3 years ago
Read 2 more answers
An object is at rest in front of a compressed spring. It travels over a surface that exerts a kinetic frictional force on it and
PolarNik [594]

Answer:

the object will travel 0.66 meters before to stop.

Explanation:

Using the energy conservation theorem:

E_i+K_i+W_f=K_f+U_f

The work done by the friction force is given by:

W_f=F_f*d\\W_f=\µ*m*g*d\\W_f=0.35*4*9.81*d\\W_f=13.7d[J]

so:

\frac{1}{2}1800*(10*10^{-2})+0-13.7d=0+0\\d=0.66m

3 0
3 years ago
Other questions:
  • Gary is trying to think of an object that could model a sunspot. His teacher tells him that such an object might be found right
    7·2 answers
  • The destruction of the ozone layer primarily occurs in the mesosphere. thermosphere. stratosphere. troposphere.
    13·2 answers
  • A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the m
    8·1 answer
  • If the radius of silver is 0.144 nm, what is the PD of the (100) plane for silver in m-2?
    5·1 answer
  • A certain resistor dissipates 0.5 W when connected to a 3 V potential difference. When connected to a 1 V potential difference,
    5·1 answer
  • B) A non-inductive load takes a current of 15 A at 125 V. An inductor is then connected
    12·1 answer
  • How much work is done by a force of 20N while moving an object through distance 10 m of the force ​
    6·1 answer
  • A boy is pulling his two sisters on a sled.
    14·1 answer
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy.​
    9·1 answer
  • The field used in the Canadian football League (CFL) has the midfield marker at the 55 yard line.how long is the fiend from goal
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!