Explanation:
Monitor the temperature of the water with the thermometer. Stop heating the water once it nears the boiling point of 100 degrees Celsius. Add copper(II) sulfate and stir until the heated solution is saturated. When the solution is saturated, copper(II) sulfate will not dissolve anymore
Answer:
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Explanation:
Recall that , depression present in freezing point is calculated with the formulae = solute particles Molarity x KF
0.3473 = m * 1.86
Solving, m = 0.187 m
Moles of HClO2 = mass / molar mass = 5.85 / 68.5 = 0.0854 mol
Molality = moles / mass of water in kg = 0.0854 / 1 = 0.0854 m
Initial molality
Assuming that a % x of the solute dissociates, we have the ICE table:
HClO2 H+ + ClO2-
initial concentration: 0.0854 0 0
final concentration: 0.0854(1-x/100) 0.0854x/100 0.0854x / 100
We see that sum of molality of equilibrium mixture = freezing point molality
0.0854( 1 - x/100 + x/100 + x/100) = 0.187
2.1897 = 1 + x / 100
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Answer: This is known as substitution cipher.
Explanation:
2H2+O2→2H2O
We have to be aware that the number of atoms are the same on both reactant side and product side.