Answer:
1.The electonic configuration of elements and their position in the periodic table are related to each other, From the electronic configuration of the elements, we can determine the period and the group to which the element belongs
Let's consider, sodium with atomic number 11 and k, l, and M shells have 2,8,and 1 electrons. since, there are 3 principal energy levels so we concluded sodium belongs to third period M Shell(valance shell) has only 1 electrons. so sodium belongs to group 1.
2. Entire D-block elements are known as Transition Elements.
3. Group 17 is the halogen group.
4. Main group of elements are...... 1,2, and 13 through 18.
5. Group 18 are the noble gas elements .
12. a). Smaller
b). Increases
c). More reactive
d). Softer
7. a). k › Ca › Ge › Br › Kr
b). Ra › Ba › Sr › Ca › Mg › Be
9. a). Ca(calcium) ion is smaller.
b). Cl(chlorine) atom is smaller.
c). Mg(magnesium) atom is smaller.
10. a). F(fluorine)
b). Sr(strontium)
c). Pb(lead)
d). At(Astatine)
The number of mole of ammonium ion, NH₄⁺ in the solution is 0.175 mole
We'll begin by calculating the number of mole of NH₄NO₃ in the solution. This can be obtained as follow:
Volume = 125 mL = 125 / 1000 = 0.125 L
Molarity = 1.40 M
<h3>Mole of NH₄NO₃ =? </h3>
Mole = Molarity x Volume
Mole of NH₄NO₃ = 1.40 × 0.125
<h3>Mole of NH₄NO₃ = 0.175 mole</h3>
Finally, we shall determine the number of mole of ammonium ion, NH₄⁺ in the solution. This can be obtained as follow:
NH₄NO₃(aq) —> NH₄⁺(aq) + NO₃¯(aq)
From the balanced equation above,
1 mole of NH₄NO₃ contains 1 mole of NH₄⁺
Therefore,
0.175 mole of NH₄NO₃ will also contain 0.175 mole of NH₄⁺
Thus, the number of mole of ammonium ion, NH₄⁺ in the solution is 0.175 mole
Learn more: brainly.com/question/25469095
Answer:
Ksp = 8.8x10⁻⁵
Explanation:
<em>Full question is:</em>
<em>After mixing an excess PbCl2 with a fixed amount of water, it is found that the equilibrium concentration of Pb2+ is 2.8 × 10–2 M. What is Ksp for PbCl2?</em>
<em />
When an excess of PbCl₂ is added to water, Pb²⁺ and Cl⁻ ions are produced following Ksp equilibrium:
PbCl₂(s) ⇄ Pb²⁺ + 2Cl⁻
Ksp = [Pb²⁺] [Cl⁻]²
If an excess of PbCl₂ was added, an amount of Pb²⁺ is produced (X) and twice Pb²⁺ is produced as Cl⁻ (2X):
Ksp = [X] [2X]²
Ksp = 4X³
As X is the amount of Pb²⁺ = 2.8x10⁻²M:
Ksp = 4(2.8x10⁻²)³
<h3>Ksp = 8.8x10⁻⁵</h3>
Answer is: electron in 2pz orbital.
The principal quantum number is one
of four quantum numbers which are assigned to each electron in
an atom to describe that electron's state, n=1,2,3... n=2 - <span>the </span>second energy level.<span>
The azimuthal quantum number is a quantum number for
an atomic orbital that determines its orbital angular
momentum and describes the shape of the orbital. l = 0,1...n-1, when l = 1, that is p </span>subshell.
The magnetic quantum number<span>, </span><span>ml, show</span> orbital<span> in which the electron is located, ml = -l...+l, ml = 0 is pz orbital.</span>
The spin quantum number<span>, </span><span>ms</span><span>, is the spin of the electron; ms = +1/2 or -1/2.</span>