The average acceleration is -5.0 m·s⁻².
The formula for acceleration (<em>a</em>) is
= 25 m·s⁻¹;
= 0;
= 5.0 s
∴
= -5.0 m·s⁻²
The negative sign tells you that the object is <em>slowing down</em>, i.e., it is <em>decelerating</em>.
1) 0.89% m/v = 0.89 grams of NaCl / 100 ml of solution
=> 8.9 grams of NaCl in 1000 ml of solution = 8.9 grams of NaCl in 1 liter of solution
2) Molarity = M = number of moles of solute / liters of solution
=> calculate the number of moles of 8.9 grams of NaCl
3) molar mass of NaCl = 23.0 g /mol + 35.5 g/mol = 58.5 g / mol
4) number of moles of NaCl = mass / molar mass = 8.9 g / 58.5 g / mol = 0.152 mol
5) M = 0.152 mol NaCl / 1 liter solution = 0.152 M
Answer: 0.152 M
Answer:
The correct answer is option D which is the decreasing order of conductivity is Mn, O, Ge.
Explanation:
You can easily answer this if you know the periodic trends. For the property of electrical conductivity, it decreases across a period and decreases also down a group. Thus, the most conductive element must be Mn, while the least conductive one is Ge. So, the answer is: -Mn, O, Ge

a)



b)


Using the atomic mass given in the periodic table:




c)


Using the atomic mass given in the periodic table:




This result is an aproximation.
To calculate the moles of AgNO3 in a solution, we need to know the volume and concentration of the solution.
Moles of AgNO3 = Volume of AgNO3 solution (L) * concentration of AgNO3 solution (M or mole/L) = 1.50 L * 0.050 M = 0.075 mole.
So 0.075 moles of AgNO3 are present in 1.50 L of a 0.050 M solution.