46.6666 that is the mass number
Explanation:
14 divided 3.0
The range of the projectile is 188 m
Explanation:
The motion of the arrow in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
The path of a projectile is the combination of these two motions: see figure in attachment.
In order to find the horizontal range of the projectile, we just need to calculate the horizontal distance travelled.
We have:
t = 5.0 s (time of fligth of the projectile)
and the horizontal velocity is constant, and it is given by

where
is the initial velocity
is the angle of projection
Substituting,

And therefore, the range of the projectile is:

Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
The smallest radius will be four (4) times the initial radius
Explanation:
The car maintains a constant angular speed. According to Newton's Second Law F = m a
1. 
2. 
Replacing 2 in 1
3. 
Where:
Fr= Frictional force
Rp= Initial Radius
An= Centripetal Acceleration
M= Mass
V= Velocity
Also we have that:
4. 
μ= Coefficient of friction between the car and the surface
M= Mass
W= Weight
G= Gravity
r is cleared from equation 3
5. 
Replacing 4 in 5
6. 
Simplifying
7. 
Now we have a new velocity equal to twice the initial velocity, We replace it by 2v in equation 7
8. 
Computing
9. 
Replacing 5 in 9

The force of attraction between 2 charged spheres can be explained by Coulomb's law,
It states the force of attraction is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance between the charges.
/

where F - force of attraction/repulsion
q₁ and q₂ - charges of the 2 spheres
k - Coulomb's law constant
r - distance between the spheres
In the question given, the charges of the spheres remain constant in both instances, only distance changes. Therefore (kq₁q₂) = c which is a constant
then F = c / r²
first instance
6 x 10⁻⁹ N = c/ (20 cm)² ---1)
F = c/(10 cm)² --- 2)
2) / 1)

F = 6 x 10⁻⁹ x 4
F = 2.4 x 10⁻⁸ N