Answer:
Transverse wave and Longitudinal wave and Electromagnetic wave
Explanation:
- An inverted wave is a wave in which the vibrations of the particles are perpendicular to the direction of wave motion.
- Longitudinal waves, on the other hand, are waves in which the vibrations of the particles are parallel to the direction of wave motion.
- Electromagnetic waves are waves that do not require medium media for transmission, including radio waves, microwaves, UV lights, etc.
- Most electromagnetic waves are transverse in nature.
The amount of work done by two boys who apply 200 N of force in an unsuccessful attempt to move a stalled car is 0.
Answer: Option B
<u>Explanation:
</u>
Work done is the measure of work done by someone to push an object from its present position. We can also define work done as the amount of forces needed to move an object from its present position to another position. So the amount of work done is directly proportionate to the product of forces acting on the object and the displacement of the object.

So in this present case, as the two boys have done an unsuccessful attempts to push a stalled car so that means the displacement of the car is zero as there is no change in the position of the car. But they have applied a force of 200 N each. So the amount of work done will be

Thus, the amount of work done by two boys will be zero due to their unsuccessful attempt to move a stalled car.
The speed of tsunami is a.0.32 km.
Steps involved :
The equation s = 356d models the maximum speed that a tsunami can move at. It reads as follows: s = 200 km/h d =?
Let's now change s to s in the equation to determine d: s = 356√d 200 = 356√d √d = 200 ÷ 356 √d = 0.562 Let's square the equation now by squaring both sides: (√d)² = (0.562) ² d = (0.562)² = 0.316 ≈ 0.32
As a result, 0.32 km is roughly the depth (d) of water for a tsunami moving at 200 km/h.
To learn more about tsunami refer : brainly.com/question/11687903
#SPJ4
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m