When an elevator is accelerating downward, the normal force is equal to mg-ma (hence you feel a little lighter when accelerating downwards)
Therefore, the upward force of the elevator floor on the person must be less than 750N
To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answer:
hope this was good for u and I believe it would be solid
Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.
Answer:
Option (c).
Explanation:
An object when when projected at an angle, will have some horizontal velocity and vertical velocity such that,

is the angle of projection
The horizontal component of the projectile remains the same because there is no horizontal motion. Vertical component changes at every point.
As a projectile falls, vertical velocity increases in magnitude, horizontal velocity stays the same
.