Answer: Hello there!
this type of equations in one dimension (when all the factors are constants) are written as:
h = initial position + initial velocity*t + (acceleration/2)*t^2
First, let's describe the hunter's equation:
We know that Graham moves with a velocity of 1.5 ft/s, and when he is 18 ft above the ground, Hunter throws the ball, and because Graham is pulled with a cable, he is not affected by gravity.
If we define t= 0 when Graham is 18 ft above the ground, the equation for Graham height (in feet) is:
h = 18 + 1.5t
where t in seconds.
Now, the equation for the ball:
We know that at t= 0, the ball is thrown from an initial distance of 5ft, with an initial velocity of 24ft/s and is affected by gravity acceleration g, where g is equal to: 32.2 ft/s (notice that the gravity pulls the ball downwards, so it will have a negative sign)
the equation for the ball is:
h = 5 + 24t - (32.2/2)t^2 = 5 + 24t - 16.1t^2
So the system is:
h = 18 + 1.5t
h = 5 +24t - 16.1t^2
so the right answer is A
2/3 is the smallest fraction. So, 2/3 is the smallest ratio....!
Hope this helps luv!!!! :>
1562 divided by 35= 45 with a remainder of 32
The final expression in standard form will be 1.601 * 10^9
<h3>Indices and expoenets</h3>
Given the expression as shown:
800.5 * (2*10^6)
This can be further simplified as:

The final expression in standard form will be 1.601 * 10^9
Learn more on indices here: brainly.com/question/10339517
For the first digit, we have 5 options that are 4,5,6,7,8 . For the second digit, we have 4 options which are 3,4,5 or 6 and for the third digit, we have the options of all numbers except 2 or 5 that is 1,3,4,6,7,8,9,0 . SO we have 8 options for third digit . So to find the total number of options, we need to multiply all the possible options for each digit that is 5 times 4 times 8 = 160 . So the number of possible options are 160 .