Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
Answer:
The factor that will change the volume of the diver's lungs upon reaching the surface is 4
Explanation:
Given data:
Pressure increases 1 atm = 101.325 kPa
34 ft = 10.3632 m
Depth of 102 ft = 31.0896 m
Question: What factor will the volume of the diver's lungs change upon arrival at the surface, V₂/V₁ = ?
The pressure at 31.0896 m:

The factor will the volume of the diver's lungs change upon arrival at the surface:

See if it is telling you to add them lol
Answer:
Well it would hold 1061.86357 liters.
Explanation:
So to find volume you multiply 18.89(8.39)(6.7) and you’ll get the volume.