Answer:
it burns things which would be burned easily by lightning, and then people put the fire out immediately. If the dried plants that they are lighting on fire are hit by lightning, it can lead to a massive fire without anyone realizing.
Answer:
Strontium
Explanation:
In the periodic table, an element with two (2) valence electrons is found on group 2. Group 2 is a group of the periodic table that harbors element called ALKALINE EARTH METALS. As the name implies, they are metals that possess shiny and solid characteristics at room temperature.
Group 2 elements include the following: Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), barium (Ba), and radium (Ra). Based on the descriptive information in this question, the element being described is a GROUP 2 element. Based on the elements in the option, only STRONTIUM (Sr) is a group 2 element.
Basic radicals (cations) have been divided into groups based on Ksp values
b,f,h are already balanced
Answer:
The reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
<u>Step 1: </u>Data given
H2(g) + I2(g) ⇌ 2HI(g) ΔG° = 2.60 kJ/mol
Temperature = 25°C = 25+273 = 298 Kelvin
The initial pressures are:
pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
<u>Step 2</u>: Calculate ΔG
ΔG = ΔG° + RTln Q
with ΔG° = 2.60 kJ/mol
with R = 8.3145 J/K*mol
with T = 298 Kelvin
Q = the reaction quotient → has the same expression as equilibrium constant → in this case Kp = [p(HI)]²/ [p(H2)] [p(I2)]
with pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
Q = (3.10²)/(1.5*1.75)
Q = 3.661
ΔG = ΔG° + RTln Q
ΔG = 2600 J/mol + 8.3145 J/K*mol * 298 K * ln(3.661)
ΔG =5815.43 J/mol = 5.815 kJ/mol
To be spontaneous, ΔG should be <0.
ΔG >>0 so the reaction is not spontaneous in the forward direction, but in the reverse direction.