Method A is Convection
Method B is Conduction
Explanation:
From the problem, we can infer that method A is convection and method B is conduction.
Conduction, convection and radiation are the three main methods of heat transfer.
- Conduction and convection requires material medium to propagate.
- Radiation occurs in the absence of a material medium.
- Conduction mostly occurs in solid. Here, heat is transferred from one hot end to the cold end of the solid. The vibration of the particles in the hot end causes the transfer of kinetic energy to the cold end until thermal equilibrium is reached.
- In convection, heat is primarily transferred in fluids as a result of density differences. Convection involves the motion of the materials of the medium. Hot air is light and it rises whereas cold air is dense and it sinks.
Learn more:
Sun brainly.com/question/1140127
#learnwithBrainly
All organisms use the same genetic code. Living organisms are made of the other same components as all other matter, organisms that inhibit the earth at any one time. They are all assembled from a nucleic acid code. Hope that helped!
Answer:
the most common oxidation no.of manganese is +2 +3 +4 +6 +7
The sulphate solutions came from a recycling LIBs waste cathode materials, which were done by previous research; their content is shown in Table 1 [18]. Sodium carbonate (Na2CO3) was purchased from Nihon Shiyaku Reagent, Tokyo, Japan (NaCO3, 99.8%), for the chemical precipitation. CO2 was purchased from Air Product and Chemical, Taipei, Taiwan (CO2 ≥ 99%), to carry out the hydrogenation–decomposition method. Dowex G26 was obtained from Sigma-Aldrich (St. Louis, MO, USA) and was used as a strong acidic cation exchange resin, to remove impurities. Multi-elements ICP standard solutions were acquired from AccuStandard, New Haven, Connecticut State, USA. The nitric acid (HNO3) and sulfuric acid (H2SO4) were acquired from Sigma-Aldrich (St. Louis, MO, USA) (HNO3 ≥ 65%) (H2SO4 ≥ 98%) The materials were analyzed by energy-dispersive X-ray spectroscopy (EDS; XFlash6110, Bruker, Billerica, MA, USA), X-ray diffraction (XRD; DX-2700, Dangdong City, Liaoning, China), scanning electron microscopy (SEM; S-3000N, Hitachi, Tokyo, Japan), and inductively coupled plasma optical emission spectrometry (ICP-OES; Varian, Vista-MPX, PerkinElmer, Waltham, MA, USA). In order to
Appl. Sci. 2018, 8, 2252 3 of 10
control the hydrogenation temperature and heating rate, a thermostatic bath (XMtd-204;