Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
The correct option is (B) <span>Aluminum is a metal and is shiny, malleable, ductile, conducts heat and electricity, forms basic oxides, and forms cations in aqueous solution.
Since Aluminium is in group 13, and all the elements in group 13 are either metals or metalloids(Boron). Hence we are left with option (B) and (D). Boron is the only metalloid in group 13 and aluminium is a metal(not a metalloid); therefore, we are left with only one option which is Option (B). And Aluminium is </span>shiny, malleable, ductile, conducts heat and electricity, forms basic oxides, and forms cations in aqueous solution.<span>
</span><span>
</span>
Answer: the sample of solid has less energy than the sample of gas
Explanation:
APEX
Answer:
b. The current stays the same.
Explanation:
In the case given current is supplied by the battery to a bulb . Here, we should know that bulb also apply resistance to the flow of current .
Now, when an identical bulb is connected in parallel to the original bulb .
Therefore, both the resistance( bulb) are in parallel.
We know, when two resistance are in parallel , current through them is same and voltage is divided between them.
Therefore, in this case current stays same in the original bulb.
Hence, this is the required solution.