Answer:
Explanation:
The formula for time period of a pendulum is given as follows :
T = 2π
l is length of pendulum and g is acceleration due to gravity .
So time period of pendulum is not dependent on the mass of the pendulum . If time period is same and length is also the same then acceleration due to gravity will also be the same . Hence the acceleration due to gravity at distant planet will be same as that on the earth.
Answer:
6010.457N
Explanation:
Centripetal acceleration = a= V²/R
At a radius of 3.6m and velocity of 16.12m/s,
Acceleration is
a = 16.12²/ 3.6 = 72.182 m/s²
Force = Mass (m) * Acceleration (a)
36 = m * 72.182
m = 36/72.182
At breaking point
Radius = 0.468 m and Velocity = 75.1 m/s
a = V²/R = 75.1²/0.468
a = 12051.3 m/s
F = Mass(m) * Acceleration (a)
F = m * 12051.3
m = F/ 12051.3
Settings the ratio of mass equal
m = m
=> 36/72.182 = F/12051.3
F = 12051.3 * 36/72.182
F = 6010.457N
kinetic energy is converted into elastic potential energy stored in the brakes.
<span>Mass represents the density of an object multiplied with the volume it occupies. As a result, an object's density is found by dividing its mass by its volume. So the answer is a.</span>
Car X traveled 3d distance in t time. Car Y traveled 2d distance in t time. Therefore, the speed of car X, is 3d/t, the speed of car Y, is 2d/t. Since speed is the distance taken in a given time.
In figure-2, they are at the same place, we are asked to find car Y's position when car X is at line-A. We can calculate the time car X needs to travel to there. Let's say that car X reaches line-A in t' time.

Okay, it takes t time for car X to reach line-A. Let's see how far does car Y goes.

We found that car Y travels 2d distance. So, when car X reaches line-A, car Y is just a d distance behind car X.