Answer:
a) The trajectory will be a helical path.
b) θ = 2*π rad
Explanation:
a) Since the initial velocity of the particle has a component parallel (x-component) to the magnetic field B
, the trajectory will be a helical path.
b) Given
t = 2*π*m/(q*B)
We can use the equation
θ = ω*Δt
where
θ is the angular displacement
ω is the angular speed, which is obtained as follows:
ω = q*B/m
then we have
θ = (q*B/m)*2*π*m/(q*B)
⇒ θ = 2*π rad
Answer:
Examples of Newton's third law of motion are ubiquitous in everyday life. For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.
Answer:
The answer is "Landfill use"
Explanation:
Landfill use associated with energy producing technologies can decrease land fertility.
The purpose of a landfill is to isolate waste from its surrounding environment, preventing water contamination and contact with air. However, landfills are not built to decompose trash
Answer:
Active—A volcano is active if it is erupting, or may erupt soon. ...
Dormant—A dormant volcano is one that may have erupted before, but it is no longer erupting. ...
Extinct—An extinct volcano is not erupting and will never erupt again.
Explanation: