What you have to do is find a periodic table and add the mass of each atom that the compound is made of.
Ca= 40.1
O= 16.0
H= 1.01
keep in mind that you have to also account for how many atoms of each there are in the molecule. for example, in Ca(OH)2, there are one Ca, two O and two H
so the molar mass of Ca(OH)2= 40.1 + (2 x 16.0) + (2 x 1.01)= 74.12 g/mol
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Following are the possible isomers of secondary alcohol and ketones for six carbon molecules. In order to distinguish between sec. alcohol and ketone we can simply treat the unknown compound with acidified Potassium Dichromate (VI) in the presence of acid. If with treatment with unknown compound the colour of K2Cr2O7 (potassium dichromate VI) changes from orange to green then it is confirmed that the unknown compound is sec. alcohol, or if no change in colour is detected then ketone is confirmed. This is because ketone can not be further oxidized while, sec. alcohol can be oxidized to ketones as shown below,
Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.