Colorimetric methods of analysis make use of Color changes in reagents to decipher the concentration of solutions.
Therefore, color completes the sentence
<h3>Colourimetric analysis</h3>
Generally, Colorimetric analysis is used to know the concentration of a chemical element in a solution while using colour indicators or reagents.
Therefore
Colorimetric methods of analysis are based on having a reagent that changes Color as a function of the concentration of the analyte.
Color
For more information on Compound
brainly.com/question/704297
The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. ... If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.
Answer: The given statement is true.
Explanation:
Water is a natural resource present in the nature and it is very precious as life without it is impossible.
So, when we unnecessarily use water then it means we are wasting a natural resource that cannot be reproduced again by human beings.
Therefore, more we are able to conserve water more we can protect other human life's and environment also.
If there is shortage of water then its prices will go high and hence we need to pay more for it.
Thus, we can conclude that the statement conserving water can save money while protecting the environment, is true.
Sir Joseph John Thomson OM PRS (18 December 1856 – 30 August 1940) was a British physicist and Nobel Laureate in Physics, credited with the discovery of the electron, the first subatomic particle to be discovered.
The given solution of Mn²⁺ is 0.60 mg/mL.
Hence mass of Mn²⁺ in 5 mL of solution = 0.60 mg/mL x 5 mL = 3 mg
Molar mass of Mn = 54.9 g/mol
Hence, moles of Mn²⁺ = 3 x 10⁻³ g / 54.9 g/mol = 5.46 x 10⁻⁵ mol
The balanced equation for the reaction is,
2Mn²⁺ + 5KIO₄ + 3H₂O → 2MnO₄⁻ + 5KIO₃ + 6H⁺
The stoichiometric ratio between Mn²⁺ and KIO₄ is 2 : 5
Hence, moles of KIO₄ reacted = 5.46 x 10⁻⁵ mol x (5 / 2)
= 13.65 x 10⁻⁵ mol
Molar mass of KIO₄ = 230 g/mol
Hence needed mass of KIO₄ = 13.65 x 10⁻⁵ mol x 230 g/mol
= 0.031395 g
= 31.395 mg
≈ 31.4 mg