Answer:
Explanation:1 mole is equal to 1 moles CaCO3, or 100.0869 grams.
Explanation:
Entropy means the amount of randomness present within the molecules of the body of a substance.
Relation between entropy and microstate is as follows.
S =
where, S = entropy
= Boltzmann constant
= number of microstates
This equation only holds good when the system is neither losing or gaining energy. And, in the given situation we assume that the system is neither gaining or losing energy.
Also, let us assume that = 1, and = 0.833
Therefore, change in entropy will be calculated as follows.
=
=
=
or, =
Thus, we can conclude that the entropy change for a particle in the given system is J/K particle.
Answer:
Forces between similar molecules are said to be <em>cohesive</em> while those between different types of molecules are said to be <em>adhesive</em>.
Water 'beads' due to its strong <em>cohesive</em> forces. The meniscus of water in a glass tube is <em>concave</em> because the <em>adhesive</em> forces are strong.
Explanation:
The water in a tube has stronger adhesive forces between the water and glass molecules, so the cohesive forces between water molecules are weaker. That makes the water 'ascend' through the tube, giving a concave form of the meniscus. Another example is mercury, which is the opposite. In this case, the cohesive forces are stronger than the adhesive ones, thus the meniscus is convex.
Answer:
<u>Oxidation state of Mn = +4</u>
Explanation:
Atomic mass of Mn = 55g/mol
From Faraday's law of electrolysis,
Electrochemical equivalent =
i.e Z = = = 0.0001424 g/C
But Equivalent weight, E = atomic mass ÷ valency = Z × 96,485
⇒ = 0.0001424 × 96,485
<u>∴ Valency of Mn = +4</u>
Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234
So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left
Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.