Answer:
The correct answer is: 360.
Explanation:
First we can express 120 as follows:
2 * 2 * 2 * 3 * 5 = 120
You can get the above multiples as follows:
120/2 = 60
60/2 =30
30/2 = 15
15/3 = 5 (Since 15 cannot be divisible by 2, so we move to the next number)
5/5 = 1
Take all the terms in the denominator for 120, you would get: 2 * 2 * 2 * 3 * 5 --- (1)
Second we can express 360 as follows:
360/2 = 180
180/2 = 90
90/2 =45
45/3 = 15 (Since 45 cannot be divisible by 2, so we move to the next number)
15/3 = 5
5/5 = 1
Take all the terms in the denominator for 360, you would get: 2 * 2 * 2 * 3 * 3 * 5 --- (2)
Now in (1) and (2) consider the common terms once and multiple that with the remaining:
2*2*2*3*5 = Common between the two
3 = Remaining
Hence (2*2*2*3*5) * (3) = 360 = LCM (answer)
Answer:
360 combinations
Step-by-step explanation:
To calculate the number of different combinations of 2 different flavors, 1 topping, and 1 cone, we are going to use the rule of multiplication as:
<u> 6 </u>* <u> 5 </u> * <u> 4 </u>* <u> 3 </u>= 360
1st flavor 2nd flavor topping cone
Because first, we have 6 possible options for the flavor, then we only have 5 possible options for the 2nd flavor. Then, we have 4 options for the topping and finally, we have 3 options for the cone.
It means that there are 360 different combinations of two different flavors, one topping, and one cone are possible
Answer: both the left and right sides go to +∞
<u>Step-by-step explanation:</u>
End behavior can be determined by two things:
- Sign of the leading coefficient
- Degree of the function
<u>Sign of leading coefficient</u>:
positive: right side goes to +∞
negative: right side goes to -∞
⇒ Leading coefficient of this function is 3 so the right side goes to +∞
<u>Degree (exponent of leading coefficient)</u>:
even: both the left and right sides point in the SAME direction
odd: the left and right sides point in OPPOSITE directions
⇒ Degree of this function is 4 so the left side will point in the same direction as the right side.
Cos9x - cos5x = -2sin2x.sin7x
sin17x - sin3x = 2sin7x.cos10x
so f(x) =

=