Answer:
[NH₃] = 14.7 mol/L
Explanation:
28 wt% is a type of concentration that indicates that 28 g of ammonia is contained in 100 g of solution.
Let's determine the amount of ammonia:
28 g . 1 mol / 17.03g = 1.64 moles of NH₃
You need to consider that, when you have density's data it is always referred to solution:
Mass of solution is 100 g, let's find out the volume
0.90 g/mL = 100 g /V
V = 100 g / 0.90mL/g → 111.1 mL
We convert the volume to L → 111.1 mL . 1 L/1000mL = 0.1111 L
mol/L = 1.64 mol/0.1111L → 14.7 M
mol/L = M → molarity a sort of concentration that indicates the moles of solute in 1L of solution
Answer:
0.7457 g is the mass of the helium gas.
Explanation:
Given:
Pressure = 3.04 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
3.04 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
<u>⇒n = 0.1863 moles</u>
Molar mass of helium = 4.0026 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>0.7457 g is the mass of the helium gas. </u>
I don’t know what exactly is but see at the picture.
Answer: Ok so the MOLE (mol) is a unit of measurement representing the amount of a substance that contains the same number of atoms as there are molecules in exactly 12 grams of carbon-12 (i.e., 6022X1023).
Explanation: And that's how it goes, I hope you understood it well!
Best regards (Pr. El Haji)