Answer:
1.38 M
Explanation:
Need to use the Molarity equation M=n/L
23.5g/ 17.031g/mol NH3 = 1.38 moles
1.38 moles/ 1.0 L = 1.38 M
Answer:
Order zero
Explanation:
Let's consider the decomposition of ammonia to nitrogen and hydrogen on a tungsten filament at 800°C.
2 NH₃(g) → N₂(g) + 3 H₂(g)
The generic rate law is:
rate = k × [NH₃]ⁿ
where,
rate: reaction rate
k: rate constant
n: reaction order
When n = 0, we get:
rate = k × [NH₃]⁰ = k
As we can see, when the reaction order with respect to ammonia is zero, the reaction rate is independent of the concentration of ammonia.
the number of moles of oxygen required are 0.08 mol. The volume of oxygen that is required to react can be calculated by the formula shown below. Substitute the values in equation (II). Hence, the volume of oxygen required to react with 3.6 L hydrogen is 1.8L . I hope this helps if not I’m sorry
The hybridization for the Br in BrO4⁻ is
. So, the correct option is (e).
In chemistry, the idea of combining atomic orbitals to create new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) is known as orbital hybridisation (or hybridization). These new hybrid orbitals are suitable for the pairing of electrons to form chemical bonds in valence bond theory.
Because more directional hybridised orbitals result in higher overlap when creating bonds, stronger bonds are formed, which favours the hybridization of orbitals. When hybridization takes place, this leads to more stable molecules.
One s orbital and three p orbitals combine to form four
orbitals, each of which has a 25% s character and a 75% p character. This process is known as
hybridization. Anytime an atom is surrounded by four groups of electrons, this kind of hybridization is necessary.
Learn more about hybridization here:
brainly.com/question/12207339
#SPJ4