The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Answer:
They are equal
Explanation:
angle of incidence = angle of reflection
<h3><u>Answer;</u></h3>
the north end to the south end.
<h3><u>Explanation;</u></h3>
- Magnetic field lines from a bar magnet form lines that are closed. The direction of magnetic field is taken to be outward from the North pole of the magnet and in to the South pole of the magnet.
- A magnetic field refers to the area surrounding a magnet where a force is exerted on certain objects. These lines are spread out of the north end of the magnet.
- The magnetic field lines resemble a bubble.
Answer:
A. Earth's gravity pulling down on air molecules
Explanation:
Air pressure refers to the weight of the air per unit surface area. It is the amount of gravitational force which is pulling down the molecules of air.
The common unit of air pressure is: Pascal, atm
1 atm = 101325 Pa
As the column of the air above increases, the air pressure increase. This is because with the increase in amount of air, the weight increase of the air increases. This is the reason a diver feels immense pressure in the sea and cooking takes a lot of time on hilly areas because of low air pressure.
Finding acceleration= final velocity-initial velocity/ time taken (or A= V-U/T)
Final speed= 2m
Initial speed= 0m
Time taken= 2 seconds
2-0/2 so it’ll be 1m/s
2-0=0
2/2=