Answer:
A) Emin = eV
B) Vo = (E_light - Φ) ÷ e
Explanation:
A)
Energy of electron is the product of electron charge and the applied potential difference.
The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;
Emin = eV
B)
The maximum stopping potential energy is eVo,
The energy of the electron due to the light is E_light.
If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy
Φ = E_light - eVo
Therefore,
eVo = E_light - Φ
Vo = (E_light - Φ) ÷ e
Answer:
Explanation:
Work done on the lever ( input energy ) = force applied x input distance
= 24 N x 2m = 48 J
Work done by the lever ( output energy ) = load x output distance
= 72 N x 0.5m = 36 J
efficiency = output energy / input energy
= 36 J / 48 J
= 3 / 4 = .75
In percentage terms efficiency = 75 % .
Answer:
d. 1.69 * 10^6 N
Explanation:
Pressure is defined as force divided by area.
Given that, A basesball is dropped from 100 meters above the surface of the earth. If the same baseball was dropped from 100 meters above the surface of the moon, it will take more time to hit the ground as compare to the ball dropped on earth. This is moon's gravity is one-sixth of that of earth. Object falling on earth possess more force of attraction. So it will reach the earth in lesser time. At moon the force of attraction is low compare to that of earth. Object will take more time to reach the surface.
The sun is a star (a giant ball of burning gases).