I'm not too sure what your asking but here are two answers that may help.
The ear drum amplifies the vibrations.
The cochlea changes vibrations into electric signals.
Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-
Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.
![Q = \int\limits^{2*\pi}_0\int\limits^\pi_0 \int\limits^r_0 {k * r} \, dr * r*d\theta* r*d\phi](https://tex.z-dn.net/?f=Q%20%3D%20%5Cint%5Climits%5E%7B2%2A%5Cpi%7D_0%5Cint%5Climits%5E%5Cpi_0%20%20%5Cint%5Climits%5Er_0%20%7Bk%20%2A%20r%7D%20%5C%2C%20dr%20%2A%20r%2Ad%5Ctheta%2A%20r%2Ad%5Cphi)
![Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0 \int\limits^r_0 {r^3} \, dr * d\theta* d\phi](https://tex.z-dn.net/?f=Q%20%3D%20k%20%2A%5Cint%5Climits%5E%7B2%2A%5Cpi%7D_0%5Cint%5Climits%5E%5Cpi_0%20%20%5Cint%5Climits%5Er_0%20%7Br%5E3%7D%20%5C%2C%20dr%20%2A%20d%5Ctheta%2A%20d%5Cphi)
![Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0 {\frac{r^4}{4}} \, d\theta* d\phi](https://tex.z-dn.net/?f=Q%20%3D%20k%20%2A%5Cint%5Climits%5E%7B2%2A%5Cpi%7D_0%5Cint%5Climits%5E%5Cpi_0%20%7B%5Cfrac%7Br%5E4%7D%7B4%7D%7D%20%5C%2C%20d%5Ctheta%2A%20d%5Cphi)
![Q = k *\int\limits^{2*\pi}_0 {\frac{\pi r^4}{4}} \, d\phi](https://tex.z-dn.net/?f=Q%20%3D%20k%20%2A%5Cint%5Climits%5E%7B2%2A%5Cpi%7D_0%20%7B%5Cfrac%7B%5Cpi%20r%5E4%7D%7B4%7D%7D%20%5C%2C%20%20d%5Cphi)
![Q = \frac{\pi^2 r^4}{2}}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5Cpi%5E2%20r%5E4%7D%7B2%7D%7D)
Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)
A higher frequency. I just got this answer on usa test prep.
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ