"<em>F = dP/dt. </em> The net force acting on an object is equal to the rate at which its momentum changes."
These days, we break up "the rate at which momentum changes" into its units, and then re-combine them in a slightly different way. So the way WE express and use the 2nd law of motion is
"<em>F = m·A.</em> The net force on an object is equal to the product of the object's mass and its acceleration."
The two statements say exactly the same thing. You can take either one and work out the other one from it, just by working with the units.
In an Internal Combustion Engine, the fuel is singed in the chamber or vessel. Example: Diesel or Petrol motor utilized as a part of Cars.
The internal engine has its vitality touched off in the barrel, as 99.9% of motors today. In an External Combustion Engine, the inner working fuel is not consumed. Here the liquid is being warmed from an outer source. The fuel is warmed and extended through the interior instrument of the motor bringing about work. Eg. Steam Turbine, Steam motor Trains. An outer burning case is a steam motor where the warming procedure is done in a kettle outside the motor.
We know the formulas for momentum and energy. But they both involve the mass of
the object, and we don't know the mass of the baseball. What can we do ?
It's not a catastrophe. The question only asks which one is bigger. If we're clever,
we can answer that without ever knowing how much the momentum or the energy
actually is. We know that both baseballs have the same mass, so let's just call it
' M ' and not worry about what it really is.
<u>Momentum of anything = (mass) x (speed)</u>
Momentum of the first baseball = (M) x (4 m/s) = 4M
Momentum of the second one = (M) x (16 m/s) = 16M
The second baseball has 4 times as much momentum as the first one has.
<u>Kinetic energy of anything = 1/2 (mass) x (speed squared)</u>
KE of the first baseball = 1/2 (M) x (4 squared) = 8M
KE of the second one = 1/2 (M) x (16 squared) = 128M
The second baseball has 16 times as much kinetic energy as the first one has.
Answer: C
high; large
Explanation:
The wave energy is related to its amplitude and frequency.
The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.
Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.
Therefore, The waves with the MOST energy have high amplitudes and large
frequencies.
Understand future consequences, for tell the future, control urges, and delayed gratification