Answer is d)
...................
Answer:
<em>The y component of his displacement is 11.22 meters</em>
Explanation:
<u>Components of the displacement</u>
The displacement is a vector because it has a magnitude and a direction. Let's suppose a displacement has a magnitude r and a direction θ, measured with respect to the positive x-direction. The horizontal component of the displacement is calculated by:

The vertical component is calculated by:

The hiker has a displacement with magnitude r = 20.51 m at an angle of 33.16 degrees. Substituting in the above equation:


The y component of his displacement is 11.22 meters
Responder:
35,2 ohm.
Explicación:
Dado:
La resistencia específica del conductor es,
La longitud del conductor es,
El área de la sección transversal del conductor es,
Sabemos que la resistencia de un conductor es directamente proporcional a su longitud e inversamente proporcional al área de la sección transversal.
Por lo tanto, la resistencia se puede expresar como:

Ahora, conecte los valores dados y resuelva para 'R'. Esto da,

Por lo tanto, la resistencia del conductor es de 35,2 ohm.
Answer:
The minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.
Explanation:
Given;
wavelength of light, λ = 600 nm
The minimum thickness of the soap bubble for destructive interference to occur is given by;

where;
n is refractive index of soap film = 1.33

Therefore, the minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.
(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².
(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².
(1.c) The relative intensity of the sound as heard by the listener is 103 dB.
(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.
(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.
<h3>
Surface area being vibrated</h3>
The surface area being vibrated by the time the sound reaches the listener is calculated as follows;
A = 4πr²
A = 4π x (20)²
A = 5,026.55 m²
<h3>Intensity of the sound</h3>
The intensity of the sound is calculated as follows;
I = P/A
I = (100) / (5,026.55)
I = 0.02 W/m²
<h3>Relative intensity of the sound</h3>

<h3>Speed of sound at the given temperature</h3>

<h3>Frequency of the sound</h3>
The frequency of the sound heard is determined by applying Doppler effect.

where;
- -v₀ is velocity of the observer moving away from the source
- -vs is the velocity of the source moving towards the observer
- fs is the source frequency
- fo is the observed frequency
- v is speed of sound


Learn more about intensity of sound here: brainly.com/question/17062836