Answer:
v = 57.2 m/s
Explanation:
The average velocity of the train can be defined as the total distance covered by the train divided by the time taken by the train to cover that distance. Therefore, we will use the following formula to find the average velocity of the train:
v = s/t
where,
s = distance covered = 460 km = (460 km)(1000 m/1 km) = 4.6 x 10⁵ m
t = time taken to cover the distance = 2 h 14 min
Now, we convert it into minutes:
t = (2 h)(60 min/1 h) + 14 min
t = 120 min + 14 min = (134 min)(60 s/1 min)
t = 8040 s
Therefore, the value of velocity will be:
v = (4.6 x 10⁵ m)/8040 s
<u>v = 57.2 m/s</u>
Explanation:
It is given that,
Mass of the soccer ball, m = 0.425 kg
Speed of the ball, u = 15 m/s
Angle with horizontal,
Time for which the player's foot is in contact with it,
Part A,
The x component of the soccer ball's change in momentum is given by :
The y component of the soccer ball's change in momentum is given by :
Hence, this is the required solution.
Answer:
a) The shear stress is 0.012
b) The shear stress is 0.0082
c) The total friction drag is 0.329 lbf
Explanation:
Given by the problem:
Length y plate = 2 ft
Width y plate = 10 ft
p = density = 1.938 slug/ft³
v = kinematic viscosity = 1.217x10⁻⁵ft²/s
Absolute viscosity = 2.359x10⁻⁵lbfs/ft²
a) The Reynold number is equal to:
The boundary layer thickness is equal to:
ft
The shear stress is equal to:
b) If the railing edge is 2 ft, the Reynold number is:
The boundary layer is equal to:
The sear stress is equal to:
c) The drag coefficient is equal to:
The friction drag is equal to:
Answer:
We know that Force = mass × acceleration
By substituting the values we get,
30 N = 15 kg × a (where a is acceleration)
Or we can write it as
15 kg × a = 30 N
Transposing 15 to RHS,
a = 30 ÷ 15 m/s²
Therefore, acceleration = 2 m/s²
pls give brainliest for the answer
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s